首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
公路运输   13篇
水路运输   6篇
综合运输   3篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2014年   4篇
  2013年   4篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2005年   1篇
  2002年   1篇
排序方式: 共有22条查询结果,搜索用时 93 毫秒
11.
12.
Eco-drive methods are being applied in modern passenger cars in the form of LCD displays showing real-time fuel consumption rates. The eco-drive is one of the most promising methods to enhance the fuel economy of vehicles. The ecodrive method can be made more effective by using the fuel-cut function. The fuel is not injected when the driver does not depress the gas pedal of a vehicle with engine speeds higher than approximately 1,500 rpm above the mid-vehicle speed range. This function is known as the fuel-cut function, and almost every modern vehicle is equipped with this function. The fuel-cut is most frequently activated on downhill sections of highway. Therefore, the CO2 exhausted from the vehicle can be zero in this downhill section. In this study, the fuel-cut function is simulated with CRUISE of AVL to find the most effective driving pattern in downhill sections. Simulations with the CRUISE software showed that the lower limit of the vehicle speed for fuelcut should be raised to improve fuel economy on steeper downhill sections. The fuel economy can be optimized when the fuelcut coasting and reacceleration is completed in the downhill part of the road. The simulation result was also compared to previous test results. Fuel consumption was reduced by approximately 4% in both the experimental and simulated results for the West Coast Highway in South Korea.  相似文献   
13.
Design methodology of component design environment for PHEV   总被引:1,自引:0,他引:1  
In this study, the design methodology for PHEV component design environment is proposed, which consists of power evaluation, component evaluation, component analysis and vehicle performance evaluation environments. First, PHEV simulators were developed based on the dynamic model of the target PHEV powertrain, and a PHEV control algorithm was designed based on the general power-split type PHEV using MATLAB/Simulink. Experimental results were used to validate the constructed PHEV simulators. The power evaluation environment provides the magnitude and direction of the power between components at the vehicle level at any selected time that the user wants to evaluate. The component evaluation environment is designed to evaluate the parameter behaviors of a component using the effort-flow causality relationship. The component analysis environment is designed to investigate component performance according to the variations of component parameters. The vehicle evaluation environment is designed to evaluate equivalent fuel economy at any selected time. It is expected that the design methodology of the PHEV component design environment proposed in this study can be extended to other x-EVs for evaluating and designing vehicle components.  相似文献   
14.
A cooperative control algorithm for an in-wheel motor and an electric booster brake is proposed to improve the stability of an in-wheel electric vehicle. The in-wheel system was modeled by dividing it into motor and mechanical parts, and the electric booster brake was modeled through tests. In addition, the response characteristics of the in-wheel system and the electric booster brake were compared through a frequency response analysis. In the cooperative control, the road friction coefficient was estimated using the wheel speed, motor torque, and braking torque of each wheel, and the torque limit of the wheel to the road was determined using the estimated road friction coefficient. Based on the estimated road friction coefficient and torque limit, a cooperative algorithm to control the motor and the electric booster brake was proposed to improve the stability of the in-wheel electric vehicle. The performance of the proposed cooperative control algorithm was evaluated through a hardware-in-the-loop simulation (HILS). Furthermore, to verify the performance of the proposed cooperative control algorithm, a test environment was constructed for the anti-lock braking system (ABS) hydraulic module hardware, and the performance of the cooperative control algorithm was compared with that of the ABS by means of a HILS test.  相似文献   
15.
The recent concerns on environmental issues have expedited the technological development of alternative fuel vehicles (AFVs), but the deployment of AFVs still remains at the initial stage mainly because of the lack of refuelling facilities. Recognising this, researchers have conducted various studies, proposing a variety of approaches to strategically locating refuelling stations. This paper presents a comprehensive review of the approaches, focusing more on applications than computational issues. The review identifies two main elements of the approaches: location modelling and refuelling demand estimation. Examining how the elements were handled in refuelling location studies, this paper suggests that future refuelling location models should properly reflect the intricate and various perspectives of three major AFV stakeholders: drivers, government agencies and refuelling service providers. This study is expected to help researchers efficiently set up their refuelling location problems and identify critical factors for seeking the solutions.  相似文献   
16.
As the size of ship has grown rapidly, the importance of exact fatigue strength assessment has been recognized more and more. High concern about fatigue crack often raises target fatigue life to two or three times of ship lifetime. This leads to the use of very thick plates to reduce dynamic stress range or the application of weld toe grinding to reduce stress concentration or removing weld defects. However, such measures can cause some troubles in fabrication process. As a fatigue strength assessment procedure, full stochastic fatigue analysis based on wave loads analysis has been recommended due to its high accuracy and straightforward approach. However, its huge computing time hinders a ship designer from making iterative explorations for a better design to minimize the use of aforementioned measures.This paper proposes an efficient approach to optimize plate thicknesses around hot spots and the applications of weld toe grinding with meeting the required target fatigue life based on the full stochastic fatigue assessment. Two conflicting objectives are taken into consideration; to minimize steel weight and to minimize total weld toe grinding length. Whether to employ weld toe grinding or not for a hot spot can be seen as a selection variable. In order to treat such selection variables along with continuous variables in the multi-objective optimization, Multi-objective Genetic Algorithm (MOGA) is introduced. This paper also employs adaptive approximation framework to resolve the computational burden of the full stochastic fatigue analysis in the optimization. The strategy to refit approximations iteratively can minimize the required number of analysis. A convergence criterion of the adaptive approximation framework is newly proposed considering the feature of discrete objective function attributed to the introduction of selection variables. One of the objective functions, toe grinding length, is purely depending on how many hot spots toe grindings are applied to. The proposed approach is applied to a liquid dome opening problem of LNG carrier, which is known as one of the most difficult parts to satisfy required fatigue strength due to the stress concentration caused by its large opening and weld attachments on upper deck.  相似文献   
17.
Conventionally a phase-shift detection method (PSDM) and a frequency-shift detection method (FSDM) have been used in loop detectors. The PSDM has a fast response time and is very effective in detecting vehicles traveling at normal speeds. However, it is well known that the detection results are erroneous for vehicles traveling at low speeds in heavy traffic conditions. On the other hand, the FSDM greatly improves the detector performance for heavy traffic conditions. However, this method is not effective in fast and normal traffic conditions. Thus, in order to collect accurate traffic data for all traffic conditions, this paper proposes combining two methods using the digital OR logic. In the developed circuit, a phase-locked loop (PLL) circuit is used for measuring the phase change. This paper also develops a new loop detector instrumentation method using the so-called M circuit for detecting frequency change. The developed method has been tested for various traffic conditions. Experimental results show that the new combined M and PLL detection method greatly improves the accuracy in all traffic conditions, reducing the error rate in measuring traffic flow by more than 83%, when compared to the PSDM.  相似文献   
18.
In this study, in order to examine the cooling efficiency of a carbon-ceramic brake disk, the temperature distribution of the disk, depending on the AMS (Auto-Motor-Sport) Fade mode, was analyzed using a numerical method. Two brake disks with different straight ventilation hole shapes were considered. The ventilation holes configuration was changed from base models in order to find a higher cooling efficiency disk design. In the Model A disk, the mean temperatures of the mid-plane and the entire disk, at the AMS Fade mode end time decreased 1.9 oC and 3 oC, hole length respectively. This was done by decreasing the length of the a2 hole from 94 mm to 59 mm. When a2 hole length was increased from 94 mm to 128 mm, the mean temperature of the entire disk and the disk mid-plane increased 3.7 oC and 16.2 oC, respectively. This was due to the increased affined air stagnation in the disk. In the Model B disk, after removing stagnation region of the b2 hole, the hole diameter expanded from 13 mm to 17.6 mm. As a result, the mean temperature of the entre disk and the mid-plane decreased 2.8 oC and 18.7 oC, respectively, (compared to the base model). As a result, increasing the surface area of the ventilation holes gave a higher cooling efficiency.  相似文献   
19.
Vehicle modeling with nonlinear tires for vehicle stability analysis   总被引:1,自引:0,他引:1  
The dynamic stability of a vehicle depends on various maneuvering features, such as traction, braking, and cornering. This study presents nonlinear vehicle models for estimating the stability region and simulating the dynamic behavior of a vehicle. Two types of vehicle models were found by considering the degrees of freedom and linearity. A simple model with nonlinear tire dynamics is useful for determining the stability region, while a complex model (a multi-body dynamic model in MSC.ADAMS) is appropriate for carrying out accurate simulations. Actual data for a mid-sized passenger car were used, and the models were validated by comparison with test results.  相似文献   
20.
Several NOx reduction technologies under development in recent years have now been commercialized, including selective catalytic reduction (SCR) with NH3 or hydrocarbons, and Lean NOx Trap. The aim of the present study is to investigate characteristics on NOx adsorption according to the oxygen concentration, de-NOx performance according to lean/rich injection cycle and toxic intermediates at LNT downstram for lean-burn gasoline engine. Under oxygen of 6%, NOx storage capacity was the highest, showed the highest NOx conversion of 98%. The reason for this phenomena is because the excited oxygen atoms at high oxygen concentration increased oxidizing power of NO. Under low temperature of 205°C, LNT catalyst showed the least NOx conversion of 14% because its activity became lower, while the generation rate of toxic HNCO was highest as CO which is generated during the rich condition, reacts with NOx stored on Ba site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号