首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1851篇
  免费   0篇
公路运输   181篇
综合类   656篇
水路运输   651篇
综合运输   363篇
  2018年   334篇
  2017年   290篇
  2016年   247篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   55篇
  2011年   204篇
  2010年   213篇
  2009年   44篇
  2008年   176篇
  2007年   121篇
  2005年   50篇
  2004年   41篇
  2003年   55篇
  2002年   16篇
  2000年   1篇
排序方式: 共有1851条查询结果,搜索用时 15 毫秒
901.
The function of vehicle dynamics control system is adjusting the yaw moment, the longitudinal force and lateral force of a vehicle body through several chassis systems, such as brakes, steering and suspension. Individual systems such as ESC, AFS and 4WD can be used to achieve desired performance by controlling actuator variables. However, integrated chassis control systems that have multiple objectives may not simply achieve the desired performance by controlling the actuators directly. Usually those systems determine the required tire forces in an upper level controller and a lower level controller regulates the tire forces through the actuators. The tire force is controlled in a recursive way based on vehicle state measurement, which may not be sufficient for fast response. For immediate force tracking, we introduce a direct tire force generation method that uses a nonlinear inverse tire model, a pseudo-inverse model of vehicle dynamics and the relationship between longitudinal force and brake pressure.  相似文献   
902.
In vehicle braking systems, the non-uniform contact pressure distribution on the brake pad is a major cause of uneven wear. The experimental approach of the wear phenomenon is the time consuming and costly. For this reason, a threedimensional finite element (FE) model of a brake system is presented for numerical simulation in this paper. A coupled thermo-mechanical analysis is carried out to confirm the non-uniform contact pressure distribution. A correlation between the non-uniform contact pressure and uneven wear is confirmed by measuring the amount of wear in the brake pad. The shape optimization of the brake pad is performed to reduce the uneven wear. In addition, the simulation results, such as natural frequency and temperature, are compared to experimental results.  相似文献   
903.
Lean NOx trap (LNT) catalyst has been used to reduce NOx emissions from diesel engines. The LNT absorbs NOx in lean condition and discharges N2 by reducing NOx in rich conditions. Thus, it is necessary to make exhaust gas lean or rich conditions for controlling LNT system. For making a rich condition, a secondary injector was adopted to inject a diesel fuel into the exhaust pipe. In the case of secondary injector, the behavior of spray is easily affected by high temperature (i.e., 250 ~ 350 °C) occurred in the exhaust manifold. Therefore, it is needed to investigate the spray behavior of diesel fuel injected into an exhaust manifold, as well as the conversion characteristics for a lean NOx trap of a diesel engine with LNT catalyst. The characteristics of exhaust emissions in NEDC (New European Driving Cycle) mode were analyzed and spray behaviors were visualized in various exhaust gas conditions. The results show that as the exhaust gas mass flow increases, the spray cone angle becomes broad and the fuel is directed to the flow field. Besides, the cone angle of spray is decreased by centrifugal force caused in exhaust gas flow field. In addition, the effects of nozzle installation degree, injection quantity, and exhaust gas flow on NOx conversion performance were clarified.  相似文献   
904.
Steering and suspension handle the direction of a vehicle according to the driver’s intentions and control the disturbance from the road surface while supporting the vehicle body. The static and dynamic characteristics of two systems are critical factors for the ride comfort and the directional stability. In the layout stage, the hard points of steering and suspension systems are determined. In the next design stage, the detailed design of the system, including gearboxes, springs, shock absorbers, and control links, is carried out. While the optimal hard points of a suspension are determined at the precedent design, interference with other peripheral components should be carefully examined in the detailed design process. In the case of the design point change should be made to avoid the interference, subsequent position and shape changes of the link mechanism are required. Therefore, there is a need to examine the optimization of suspension compliance characteristics with chassis design changes and the durability performance of the modified design. This study proposes an integrated analysis method for the design optimization and the durability evaluation of such optimized design specifications of the rear independent suspension for a military vehicle.  相似文献   
905.
This paper presents a new control scheme for lateral collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of lateral CA systems. The first contribution is a new lane-changing model based on vehicle edge turning trajectory (VETT) to make vehicle adapt to different driving roads and conform to drivers’ characteristic, in addition to ensure vehicle steering safety. The second contribution is vehicle semi-uncertainty dynamic model (SUDM), which is SISO model. The problem of stability performance without the information on sideslip angle is solved by the proposed SUDM. Based on the proposed VETT and SUDM, the lateral CA system can be designed with H robust controller to restrain the effect of uncertainties resulting from parameter perturbation and lateral wind disturbance. Single and mixed driving cycles simulation experiments are carried out with CarSim to demonstrate the effectiveness in control scheme, simplicity in structure for lateral CA system based on the proposed VETT and SUDM.  相似文献   
906.
This paper is on the design of cooperative adaptive cruise control systems for automated driving of platoons of vehicles in the longitudinal direction. Longitudinal models of vehicles with simple dynamics, an uncertain first order time constant and vehicle to vehicle communication with a communication delay are used in the vehicle modeling. A robust parameter space approach is developed and applied to the design of the cooperative adaptive cruise control system. D-stability is chosen as the robust performance goal and the feedback PD controller is designed in controller parameter space to achieve this D-stability goal for a range of possible longitudinal dynamics time constants and different values of time gap. Preceding vehicle acceleration is sent to the ego vehicle using vehicle to vehicle communication and a feedforward controller is used in this inter-vehicle loop to improve performance. Simulation results of an eight vehicle platoon of heterogeneous vehicles are presented and evaluated to demonstrate the efficiency of the proposed design method. Also, the proposed method is compared with a benchmark controller and the feedback only controller. Time gap regulation and string stability are used to assess performance and the effect of the vehicle to vehicle communication frequency on control system performance is also investigated.  相似文献   
907.
For highly automated driving in urban regions it is essential to know the precise position of the car. Furthermore it is important to understand the surrounding context in complex situations, e.g. multilane crossings and turn lanes. To understand those situations there is not only the task to detect the lane border, but to detect the painted information inside the lane. The paper is facing and evaluating two methods to classify this additional lane information. Therefore the images from five cameras mounted around the car are used. Four of them with fisheye lenses. The methods have in common, that the input images are transformed into a bird view projection. First introduced method is to extract contours from the transformed images and collect geometrical features and Fourier coefficients. The second introduced way, is to calculate histograms of oriented gradients and use it as input for the classification step. Both classification approaches are implemented and evaluated as multiclass and single class detectors for each arrow type. Furthermore, the classification results from a support vector machine and random forest were faced for this classification problem. The results from the multiclass detectors are evaluated and presented in form of confusion matrices. With the introduced approaches a high detection confidence could be achieved, proofed with validation datasets and in practical use.  相似文献   
908.
The objective of this study is to investigate a nonlinear model-based multivariable (MIMO, Multi Input Multi Output) technique to decouple actuators interaction and to reduce the calibration effort, while increasing control performances, above all in transient conditions, and robustness with respect to model uncertainties and system parameter variations. The presented control technique is based on the development of a nonlinear dynamical physical model of the diesel air and charging system. Feedback Linearization control is then applied to decouple actuators’ interactions and compensate for nonlinearities. A new set of virtual inputs are defined inverting the system differential equations. Relation among the new virtual inputs and the outputs is purely linear and decoupled, meaning that each virtual input affects linearly only one output. Moreover, a linear control block is added to guarantee transient and steady state performances and closed loop robustness. The proposed control approach has been validated through small diesel engine dyno and vehicle activities. Transient test bench maneuvers show that the control is able to coordinate the actuators in order to fulfill the targets and to guarantee similar performances in different operating points. In addition the robustness to environmental changes has been demonstrated by vehicle tests at different ambient conditions.  相似文献   
909.
Motivated by the development of high-precision digital maps for advanced driver assistance system (ADAS) in recent years, this study provides a new approach to solve the problems of the conventional automatic transmission vehicle travelling on sloping roads. Based on vehicle dynamics, shift problems on hilly roads are analyzed. A novel intelligent shift strategy is proposed, which consists of a dynamic shift schedule for the uphill, a safety shift schedule for the downhill, and a comprehensive economical shift schedule for the gentle slopes. A set of driver-in-loop co-simulation tests was conducted in a driving simulator that is equipped with a MATLAB/Simulink dynamics simulation platform. The test results verified the effectiveness of the new intelligent shift strategy. With the road information provided by a high-precision digital map, busy shifting can be eliminated, and improved dynamic performance can be achieved for a vehicle travelling on the uphill roads; undesired upshift can be prevented, and engine traction resistance can be used to relieve the load of braking system when a vehicle travelling on the downhill roads; also, fuel consumption can be reduced for a vehicle travelling on a gently sloped road. Consequently, this novel intelligent shift strategy offers a reliable and effective solution for improving a vehicle’s driving performance on a hilly road.  相似文献   
910.
One important parameter influencing mixture formation and spray/wall interaction within engines is the geometry of the nozzle. In contrast to Diesel nozzles, the influence of the orifice geometry on spray formation has hardly be investigated for gasoline nozzles. In order to demonstrate the potential of adjusting the nozzle geometry of a modern GDI nozzle, we compare two six-hole, high-pressure nozzles with an identical structure, but different rounding radius of the orifice hole-inlet and different orifice hole-geometries: nozzle A with a rounded inlet and an orifice length to diameter ratio of 3/2 and nozzle B with a sharp inlet and an orifice length to diameter ratio of 1. In a first measurement campaign the spray formation is visualized using high-speed shadowgraphy imaging. The results show differences in spray angle and penetration depth. In a second measurement campaign we examine the spray/wall interaction and wall film formation by means of infrared thermography. The thermography measurements indicate that the geometry of nozzle B produces sprays with beneficial characteristics. This is very important for a clean combustion process and a decrease of soot emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号