排序方式: 共有1857条查询结果,搜索用时 0 毫秒
141.
142.
In this paper, we report our study on a numerical fluid-structure interaction problem originally presented by Mok et al.(2001) in two dimensions and later studied in three dimensions by Valdés Vazquez(2007), Lombardi(2012), and Trimarchi(2012). We focus on a 3D test case in which we evaluated the sensitivity of several input parameters on the fluid and structural results. In particular, this analysis provides a starting point from which we can look deeper into specific aspects of these simulations and analyze more realistic cases, e.g., in sails design. In this study, using the commercial software ADINATM, we addressed a well-known unsteadiness problem comprising a square box representing the fluid domain with a flexible bottom modeled with structural shell elements. We compared data from previously published work whose authors used the same numerical approach, i.e., a partitioned approach coupling a finite volume solver(for the fluid domain) and a finite element solver(for the solid domain). Specifically, we established several benchmarks and made comparisons with respect to fluid and solid meshes, structural element types, and structural damping, as well as solution algorithms. Moreover, we compared our method with a monolithic finite element solution method. Our comparisons of new and old results provide an outline of best practices for such simulations. 相似文献
143.
Guilherme Rosa Franzini Rebeca Caramêz Saraiva Santos Celso Pupo Pesce 《船舶与海洋工程学报》2017,16(4):465-472
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation. 相似文献
144.
Nabanita Datta 《船舶与海洋工程学报》2017,16(4):458-464
This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, analyzed using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation (lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency. 相似文献
145.
This article mainly proposed three technically effective alternatives to comply with the emission control regulations and laws in shipping. Liquefied natural gas (LNG)-diesel dual fuel power technology was introduced through feasibility study on several aspects including research development, retrofitting methods, vessel type, safety issues, and other technical characteristics. Based on sample ship and route, economic evaluation was conducted on these three alternatives. Cost-effectiveness of each project was detailed in the calculation of net present value (NPV) and payback time via discount cash flow method. The findings show that LNG-diesel dual fuel power technology performs best among three alternatives. Due to the impact of fuel price, two scenarios were carried out in sensitivity analysis which witnessed a variation of NPV with the fluctuation of fuel price. Further study shows the turning point between project (i) and project (iii) with different discount rate and the interaction between discount rate and fuel price, left project (ii) the least cost-effective solution in three alternatives. 相似文献
146.
147.
German De Melo Rodríguez Enrique Martin-Alcalde J.C. Murcia-González Sergi Saurí 《WMU Journal of Maritime Affairs》2017,16(3):405-420
This paper provides an estimation of air emissions (CO2, NOX, SOX and PM) released by cruise vessels at the port level. The methodology is based on the “full bottom-up” approach and starts by evaluating the fuel consumed by each vessel on the basis of its individual port activities (manoeuvring, berthing and hoteling). The Port of Barcelona was selected as the site at which to perform the analysis, in which 125 calls of 30 cruise vessels were monitored. Real-time data from the automatic identification system (AIS), factor emissions from engine certificates and vessel characteristics from IHS Sea-web database were also collected for the analysis. The research findings show that the most appropriate indicators are inventory emissions per “port-time gross tonnage”, “port-time passenger” and “port time”. These emission indicators improve our understanding of cruise emissions and will facilitate the work that aims to estimate reliably and quickly the in-port ship emission inventories of cruise ports. 相似文献
148.
In this paper, a numerical investigation of a float-over installation for an offshore platform is presented to verify the feasibility of the actual installation. The hydrodynamic performance of a T-barge is investigated in the frequency domain, and the coupled motions are analyzed in the time domain. We then compare with those of the model test and determine that the response amplitude operator and the time series agree quite well. The barge exhibits favorable hydrodynamic behavior in the considered sea state, and the equipment loads are allowable. The mooring system and sway fender forces are within the permissible range. Based on these results, we can verify that the actual installation of the offshore platform is feasible. We accurately simulated many important factors and effectively reduced the risk associated with the offshore installation, which is of great importance. As such, we demonstrate that the numerical simulation of the float-over installation for offshore platforms has practical engineering significance. 相似文献
149.
The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed. 相似文献
150.
A numerical study of ship-to-ship interaction forces is performed using a commercial CFD code, and the results are compared with experimental data and with the results of a panel method analysis. Two ship models have been used in the interaction forces analysis: a tug and a tanker, advancing parallel to each other with different lateral distances and two different values of the fluid depth. Computations are carried out with four different flow models: inviscid and viscous flow with the free surface modeled as a rigid wall and inviscid and viscous flow with the deformable free surface. A fair agreement was obtained with available experimental data and results obtained by panel method. The influence of viscosity in the computations is found to be comparatively weak, while the wavemaking effects may be important, at small magnitude of the horizontal clearance. 相似文献