首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1133篇
  免费   18篇
公路运输   506篇
综合类   41篇
水路运输   265篇
铁路运输   42篇
综合运输   297篇
  2023年   14篇
  2022年   37篇
  2021年   13篇
  2020年   6篇
  2019年   9篇
  2018年   26篇
  2017年   26篇
  2016年   57篇
  2015年   15篇
  2014年   69篇
  2013年   138篇
  2012年   74篇
  2011年   69篇
  2010年   62篇
  2009年   77篇
  2008年   50篇
  2007年   18篇
  2006年   20篇
  2005年   28篇
  2004年   18篇
  2003年   19篇
  2002年   21篇
  2001年   18篇
  2000年   17篇
  1999年   17篇
  1998年   11篇
  1997年   14篇
  1996年   13篇
  1995年   20篇
  1994年   11篇
  1993年   13篇
  1992年   6篇
  1991年   7篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   12篇
  1982年   6篇
  1981年   11篇
  1980年   9篇
  1979年   9篇
  1977年   10篇
  1976年   10篇
  1975年   15篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1151条查询结果,搜索用时 515 毫秒
431.
In order to solve the problem of slow flame propagation in a spark-ignition engine fueled with compressed natural gas (CNG), the influence of in-cylinder flows on combustion process was investigated in CA6SE3-21E4N CNG-engine by means of numerical simulation and experiment. The status of in-cylinder flows from intake to expansion stroke was described by computational fluid dynamic tool, which revealed that the in-cylinder flows were one of the main reasons of slow burning rate. Therefore, a special-shaped combustion chamber called Cross was used to improve the in-cylinder flows. The results showed that peak turbulent kinetic energy of Cross was 43.9% higher than that of original combustion chamber called Cylinder during the late compression period at 1450 rpm 100% load. The combustion parameters, brake specific fuel consumption (BSFC) and regulated emissions were obtained by means of experiment. At 1450rpm 25%, 50%, 75% and 100% load conditions, the ignition delay of Cross was longer than that of Cylinder, moreover, the Cross produced averagely 5.75°CA shorter combustion duration. The BSFC of Cross was on an average of 4.3% reduction at 1450 rpm as well as the HC and CO emissions were reduced whereas the NOx emissions were significantly increased.  相似文献   
432.
An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. However, the electric water pump for internal combustion engine generates much more heat loss than that for hybrid electric vehicle or electric vehicle since it is operated by electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump with an inverter integrated has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of 125°C, water pump speed of 6000 rpm, coolant temperature of 106°C and coolant flow rate of 120 L/min were used as a standard condition. Therefore, the thermal performance of the canned type electric water pump’s motor and inverter was evaluated by comparison with that of mechanical seal type. In the motor, the temperature reduced by over 10°C, and in the inverter, the amount of temperature decrease equaled to the maximum temperature difference, about 18.7°C. Also, canned type electric water pumps of variable materials were compared for the evaluation of thermal transfer performance for variable thermal conductivity of a can. The motor and inverter were cooled lower to 42°C at motor and about 40°C at inverter for reasonable selection of can’s thermal conductivity.  相似文献   
433.
Brake judder is abnormal vibration, which is mainly generated by uneven contact between the brake disc and pad. The abnormal vibration from BTV (Brake Torque Variation) is transferred to the suspension and the steering system during braking. In this paper, judder simulation is carried out using a multi-body dynamic analysis program to analyze the relationship between judder and the transfer mechanism, which consists of the suspension and the steering system. In order to verify the analytical model, test results are compared with the simulation results. A sensitivity analysis is also carried out. In addition, an optimization method is presented for judder reduction, using the design of experiments.  相似文献   
434.
The performance of a steering system equipped with active front steering (AFS) device is investigated with the consideration of AFS intervention and a proposed dynamic model. Firstly, the kinematics and dynamics of AFS are illustrated based on the mechanism of AFS with planetary gear set and a detailed dynamic model. Furthermore, a basic control on the voltage of DC motor at AFS actuator is proposed. It is realized by a proportional controller that the input is the difference of desired steering ratio and a conventional gear ratio. Finally, two numerical simulations are carried out. One is on-center handling test to demonstrate the basic characteristics of AFS. The other simulation is to demonstrate the effects of vehicle speed, frequency of steering input and AFS intervention on steering system performance. It is shown that the proposed AFS dynamic model is capable to simulate dynamic performance of AFS. The effect of AFS intervention on turning efforts at hand steering wheel is inevitable and the turning comfort is deteriorated to some extent.  相似文献   
435.
There are two types of hot-stamping processes, direct and indirect, depending on the sequence of the heating, forming, and quenching steps and the method used for each step. In this study, an indirect hot-stamping process consisting of forming at room temperature, heating, and water quenching was applied to develop a coupled torsion beam axle. The analysis results indicated that the application of the heat convection coefficient is critical in the simulations and must take into account the temperature and specific location in the model to ensure the accuracy of the heating and quenching analysis. The heat convection coefficients used in the analysis were directly measured at various positions of the tube (e.g., outside, inside, and bending region) using thermocouples, and the final values were determined through correlation between the actual tests and numerical analysis. The experimental and simulated final deformed shape and temperature distribution were in good agreement.  相似文献   
436.
In controlling the longitudinal motion of electrified vehicles such as hybrid vehicles and PHEV (Plug-in Hybrid Electric Vehicles), the variation of the driving resistance loads (or driving loads) such as road grade and actual vehicle mass, is the most influential factor which limits the control performance. Measuring the driving load is not impossible, but it is costly since additional sensors have to be mounted on the vehicle. In this study, methods for estimating vehicle mass and road grade are designed to compensate for the driving loads. The proposed methods are verified using simulation tools and then evaluated experimentally.  相似文献   
437.
Traffic accidents are caused by various factors, which can be classified into human factors, vehicle factors and environmental factors. Recently, human factors have been drawing particular attention as efforts are being made to enhance the safety performance of vehicles and improve road conditions. Driving distraction caused by an increased driving workload is a representative human factor. Various studies in the past have attempted to quantify the driving workload by using EEG activities. However, they have failed to consider vibration properties generated from vehicle engines. A number of noise signals were included in brainwave signal processing, which resulted in a failure to obtain reliable outcomes. Thus, this study suggests driver EEG activities free of vehicle engine secondary vibration in order to develop a method that analyzes the driving workload with high statistical reliability. By using the analytical method developed in this study, standard values of driving workload for straight and left-turn driving that has statistical significance could be calculated. The analytical method for driving workload created by this study can be applied to HVI and road design.  相似文献   
438.
439.
Emission regulations are becoming more stringent and remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches for reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of pressure sensors and the complex engine head design for additional equipment present difficulties for manufacturers. In this paper, cylinder pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to be burned (MFB50) and the IMEP are valuable for determining the combustion status. These two in-cylinder quantities are measured and applied to the engine control logic. Fuel injection timing is controlled to adjust the operating MFB50 to the target MFB50 using PID control logic, and the fuel injection quantity is controlled to adjust the measured IMEP to the desired IMEP. The control logic is demonstrated at steady state and during transient conditions and is applied to an NEDC mode test.  相似文献   
440.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号