首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
水路运输   11篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
11.
In order to realize a more quantitative prediction of broaching and capsizing in following and quartering seas, existing mathematical modelling techniques should be upgraded. Therefore, it is necessary to systematically examine all factors relevant to capsizing in following and quartering seas. To this end, we first attempted to examine the prediction accuracy of wave-induced forces by comparing calculations with captive model experiments. As a result, we found that a wave-induced surge force has a certain nonlinearitiy with respect to wave steepness. The nonlinearity of sway–roll coupling with respect to sway velocity was also found, and our numerical result with these nonlinearities improves the prediction accuracy of the critical ship speed of capsizing in following and quartering seas. The importance of the wave effect on propeller thrust was also examined. We found that this effect is not negligibly small and could improve capsizing predictions in heavy following and quartering seas. Finally, we attempted to investigate the importance of nonlinear heel-induced hydrodynamic forces on numerical predictions of capsizing due to broaching. Here, we propose a new procedure for captive model experiments to obtain hydrodynamic forces with various heel angles up to 90°, and data on heel-induced hydrodynamic forces with respect to heel angle in calm water are provided. We then compare the numerical simulations with the nonlinear heel-induced hydrodynamic forces and without them. These time series comparisons show that the effect of nonlinear heel-induced hydrodynamic forces in calm water is not negligibly small for the case of ship capsizing due to broaching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号