首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2372篇
  免费   6篇
公路运输   437篇
综合类   672篇
水路运输   779篇
铁路运输   2篇
综合运输   488篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   9篇
  2018年   347篇
  2017年   307篇
  2016年   270篇
  2015年   11篇
  2014年   49篇
  2013年   74篇
  2012年   96篇
  2011年   249篇
  2010年   247篇
  2009年   102篇
  2008年   220篇
  2007年   129篇
  2006年   11篇
  2005年   59篇
  2004年   47篇
  2003年   65篇
  2002年   22篇
  2001年   3篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
排序方式: 共有2378条查询结果,搜索用时 0 毫秒
11.
The magnetic field tuning characteristics of an ultrasonic motor (USM) stator are discussed. The stator consists of two piezoelectric ceramic transducer (PZT) plates and one sandwiched-in Terfenol-D plate. The dimensions of the stator are carefully adjusted to specifically discuss the influence of the magnetic field on the frequency difference between the longitudinal and bending modes of the stator. The frequency difference discussed in this paper is usually small and mainly caused by uneven materials, machining errors and changes in external conditions (temperature, pre-stress or load). The longitudinal and bending modes of the stator are simultaneously excited by an external electric field to generate the elliptic motion trajectories of the driving points. A direct current (DC) magnetic field is applied to decrease the difference between the two mode frequencies of the fabricated stator. In experiments, the dependences of the two mode frequencies and their difference on DC magnetic fields are all investigated. The experimental results indicate that the difference between the longitudinal and bending mode frequencies of the PZT/Terfenol-D/PZT composite stator can be tuned by changing the intensity of the external DC magnetic field.  相似文献   
12.
Traditional control methods of two-wheeled robot are usually model-based and require the robot’s precise mathematic model which is hard to get. A sensorimotor self-learning model named SMM TWR is presented in this paper to handle these problems. The model consists of seven elements: the discrete learning time set, the sensory state set, the motion set, the sensorimotor mapping, the state orientation unit, the learning mechanism and the model’s entropy. The learning mechanism for SMM TWR is designed based on the theory of operant conditioning (OC), and it adjusts the sensorimotor mapping at every learning step. This helps the robot to choose motions. The leaning direction of the mechanism is decided by the state orientation unit. Simulation results show that with the sensorimotor model designed, the robot is endowed the abilities of self-learning and self-organizing, and it can learn the skills to keep itself balance through interacting with the environment.  相似文献   
13.
For the pressure enthalpy of high pressure pneumatics, the computational fluid dynamics (CFD) simulation based on ideal gas assumption fails to obtain the real temperature information. Therefore, we propose a method to compensate the pressure enthalpy of throttling for CFD simulation based on ideal gas assumption. Firstly, the pressure enthalpy is calculated for the pressure range of 0.101 to 30 MPa and the temperature range of 190 to 298 K based on Soave-Redlich-Kwong (S-R-K) equation. Then, a polynomial fitting equation is applied to practical application in the above mentioned range. The basic idea of the compensation method is to convert the pressure enthalpy difference between inlet air and nodes into the compensation temperature. In the above temperature and pressure range, the compensated temperature is close to the real one, and the relative temperature drop error is below 10%. This error is mainly caused by the velocity difference of the orifice between the real and ideal gas models. Finally, this compensation method performs an icing analysis for practical high pressure slide pilot valve.  相似文献   
14.
Phased-mission systems (PMSs) have wide applications in engineering practices, such as manmade satellites. Certain critical parts in the system, such as cold standby, hot standby and functional standby, are designed in redundancy architecture to achieve high reliability performance. State-space models such as Markov process have been used extensively in previous studies for reliability evaluation of PMSs with dynamic behaviors. The most popular way to deal with the dynamic behaviors is Markov process, but it is well known that Markov process is limited to exponential distribution. In practice, however, the lifetime of most machinery products can follow non-exponential distributions like the Weibull distribution which cannot be handled by the Markov process. In order to solve this kind of problem, we present a semi-Markov model combined with an approximation algorithm to analyze PMS reliability subjected to non-exponential failures. Furthermore, the accuracy of the approximation algorithm is investigated by comparing to an accurate solution, and a typical PMS (attitude and orbit control system) is analyzed to demonstrate the implementation of the method.  相似文献   
15.
In recent years, electric vehicles are developing rapidly in automotive industry. When involved in accidents, if the batteries of electric cars break, it is likely to cause a short circuit and start a fire. Aimed at this issue, a car battery protection device based on torsion spring has been designed. The car battery protection device can deform in a particular pattern in a collision accident. Impact energy of the accident is absorbed by the deformation, which can significantly reduce impact force on the batteries. Meanwhile, based on the principle of maximum energy absorption, some crucial parameters of the device can be determined. Furthermore, an impact simulation conducted on ANSYS software shows that maximum safety factors can be obtained when the material of car battery protection device is carbon steel. The analysis of “safe space” in the car battery protection device shows that the device can prevent battery damage effectively in general circumstances, which means the reliability of the device has been verified. Therefore, when applied to electric vehicles, the car battery protection device, which can prevent secondary accidents, significantly improves the vehicle security in accidents.  相似文献   
16.
Strain invariant failure theory (SIFT) is a micro-mechanics-based failure theory for multi-scale failure analysis of composite materials originally proposed by Gosse and Christensen. In this paper, the approach for obtaining strain amplification matrix which is a key step for the execution of SIFT is improved by adopting representative volume element (RVE) finite element models considering periodical boundary condition, based on which more actual deformation mode is reflected. The deformation modes and strain data at the characteristic points of the centroid cell of multi-cell RVE model are analyzed and taken as a reference. It can be concluded that more reasonable deformation mode and relationship between the micro-mechanical and macro-mechanical strain states are obtained by employing the new model. Finally, numerical examples are provided to illustrate the determination of strain amplification factors within the RVEs considering periodical boundary condition at the characteristic points.  相似文献   
17.
The rate equations and the power evolution equations based on excited state absorption (ESA) and cooperative upconversion (CUC) of high concentration erbium-doped yttrium aluminum garnet (YAG) transparent ceramic waveguide amplifier are set up to analyze the effects of the pump power, active ion concentration and waveguide length on the amplifier gain and noise figure (NF). The numerical analysis predicts that with a pump power of 100mW, an active ion concentration of 1.0×1026 ion/m3 and a waveguide length of 3 cm, a small-signal gain of 30 dB and an NF of 5 dB can be achieved in the micro-chip amplifier.  相似文献   
18.
ABSTRACT

Monitoring bicycle trips is no longer limited to traditional sources, such as travel surveys and counts. Strava, a popular fitness tracker, continuously collects human movement trajectories, and its commercial data service, Strava Metro, has enriched bicycle research opportunities over the last five years. Accrued knowledge from colleagues who have already utilised Strava Metro data can be valuable for those seeking expanded monitoring options. To convey such knowledge, this paper synthesises a data overview, extensive literature review on how the data have been applied to deal with drivers’ bicycle-related issues, and implications for future work. The review results indicate that Strava Metro data have the potential—although finite—to be used to identify various travel patterns, estimate travel demand, analyse route choice, control for exposure in crash models, and assess air pollution exposure. However, several challenges, such as the under-representativeness of the general population, bias towards and away from certain groups, and lack of demographic and trip details at the individual level, prevent researchers from depending entirely on the new data source. Cross-use with other sources and validation of reliability with official data could enhance the potentiality.  相似文献   
19.
To obtain an ultralean air-fuel ratio and to reduce engine-out NOX and HC emissions induced by the richer mixture near the spark plug, a spray and wall complex guided combustion system has been developed by utilizing the fuel characteristics of LPG. The new combustion system configuration is optimized by using a commercial CFD code, FIRE V2013, and the reliability of the system has been experimentally demonstrated by Plane Laser-Induced Fluorescence (PLIF). The mixture formation in the new combustion system under part load (2,000 rpm) is numerically simulated. With an injection timing of 40°CA BTDC, the LPG spray which is injected from two upper holes, reaches the ignition point, and the other part of the LPG spray which is injected from the bottom hole, is directed to the ignition point through the vertical vortices at the same time. At the ignition timing of about 20°CA BTDC, the two-part mixtures have been shown to form a stable and richer stratified mixture around the ignition point, and the maximum global air-fuel ratio reaches to 60: 1.  相似文献   
20.
Ensuring engine efficiency is a crucial issue for automotive manufacturers. Several manufacturers focus on reducing the time taken to develop and introduce brand new vehicles to the market. Thus, a synergic approach including various simulations is generally adopted to achieve a development schedule and to reduce the cost of physical tests. This study involved proposing a design process that is very useful in the preliminary development stage through effective support from simulations. This type of simulation-based design process is effective in developing timing chain drives; the use of this process, based on results from multiple trials, showed improvements in performance including low friction and vibration, improved durability, and cost-effective part design when compared to conventional processes. This study proposes an integrated approach to the preliminary design of an automotive timing chain system. The approach involves structural and dynamic analyses. The details of the design process are described by using the case of a virtual engine. This study conducted and summarized a dynamic and structural analysis as well as topological optimization to describe a process to obtain optimal results. The results of this study indicated the following improvements in overall performance factors: 12.1 % improvement in transmission error, 10.1 % reduction in chain tension, 46 % reduction in tensioner arm weight, and 11 % reduction in transversal displacement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号