首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   5篇
公路运输   287篇
综合类   6篇
水路运输   89篇
铁路运输   3篇
综合运输   61篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   37篇
  2017年   25篇
  2016年   32篇
  2015年   10篇
  2014年   32篇
  2013年   48篇
  2012年   38篇
  2011年   47篇
  2010年   39篇
  2009年   43篇
  2008年   40篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
41.
42.
In this paper we present a dual-time-scale formulation of dynamic user equilibrium (DUE) with demand evolution. Our formulation belongs to the problem class that Pang and Stewart (2008) refer to as differential variational inequalities. It combines the within-day time scale for which route and departure time choices fluctuate in continuous time with the day-to-day time scale for which demand evolves in discrete time steps. Our formulation is consistent with the often told story that drivers adjust their travel demands at the end of every day based on their congestion experience during one or more previous days. We show that analysis of the within-day assignment model is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality. We also show there is a class of day-to-day demand growth models that allow the dual-time-scale formulation to be decomposed by time-stepping to yield a sequence of continuous time, single-day, dynamic user equilibrium problems. To solve the single-day DUE problems arising during time-stepping, it is necessary to repeatedly solve a dynamic network loading problem. We observe that the network loading phase of DUE computation generally constitutes a differential algebraic equation (DAE) system, and we show that the DAE system for network loading based on the link delay model (LDM) of Friesz et al. (1993) may be approximated by a system of ordinary differential equations (ODEs). That system of ODEs, as we demonstrate, may be efficiently solved using traditional numerical methods for such problems. To compute an actual dynamic user equilibrium, we introduce a continuous time fixed-point algorithm and prove its convergence for effective path delay operators that allow a limited type of nonmonotone path delay. We show that our DUE algorithm is compatible with network loading based on the LDM and the cell transmission model (CTM) due to Daganzo (1995). We provide a numerical example based on the much studied Sioux Falls network.  相似文献   
43.
Kim  Woojung  Wang  Xiaokun 《Transportation》2022,49(5):1315-1337
Transportation - Commercial vehicles are more likely to park close to their destinations than passenger vehicles even though sometimes parking violations are inevitable for their freight or service...  相似文献   
44.
The purpose of this study is to propose a concept design process for an automotive body structure using technical information on the major joints and members of vehicles. First, in order to collect the technical information on major joints and members, 17 vehicles were selected using benchmark data. The collected technical information for the selected vehicles was the cross sectional shapes of each joint and member which were used for the analysis of joint stiffness, crashworthiness and static stiffness of the member to make a database along with cross section properties. This study applied a ‘What If Study’ technique to perform a concept design of an automotive body using the analyzed information and selected cross section meeting the design objectives. The criteria for the selection of the cross section were defined by subdividing the defined design objectives of an automotive body structure and constraints into members and joints. In order to configure an analysis model of an automotive body structure using the selected cross section, a shape parametric model was used and static stiffness, dynamic stiffness and crashworthiness were assessed to evaluate the configured automotive body structure. The evaluation result showed that the crashworthiness and static/dynamic stiffness were improved compared to an existing body structure. In addition, the weight of the body structure was reduced. Through this study, the process that can rapidly and effectively derive and evaluate the concept design of an automotive body structure was defined. It is expected that, henceforth, this process will be helpful for the study of automotive body structures.  相似文献   
45.
In this paper, we propose a universal plug and play (UPnP) — controller area network (CAN) gateway system using UPnP middleware for interoperability between external smart devices and an in-vehicle network. The proposed gateway consists of a UPnP communication device, a CAN communication device, and a device translator layer. In-vehicle devices are not usually IP-based, so we implemented an in-vehicle device manager in the UPnP communication device which is in the gateway. We developed a vehicle simulator to produce real vehicular data for performance analysis. The CAN communication device transmits and receives real-time vehicle data between the real vehicular simulator and external devices through the UPnP. The device translator layer configures a message frame for enabling seamless data input and output between the CAN and UPnP protocols. After implementation, we generated an internal-external service request and tested the result. Finally, we confirmed the service request and operation between external devices and the internal vehicular device. Additionally, for a variety of external device numbers and communication environments, we demonstrated the gateway performance by measuring the round trip time (RTT) for overall service implementation.  相似文献   
46.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   
47.
An alternator, which converts mechanical rotational energy into electrical energy, is an important component of a vehicle. Alternators operate over a broad range of rotational speeds, typically from 3,000 RPM to 18,000 RPM, which demands a cooling fan producing sufficient airflow, ideally with a minimum of noise. In the current study, an optimized alternator-cooling fan was developed through a linked DOE(Design OF Experiment) process and numerical analysis. The SC/Tetra and FlowNoise S/W programs were used to calculate flow rates and noise levels, respectively, for the newly developed fan. Compared with original model, the numerical results predicted a 3 dBA noise reduction; the measured reduction was 4 dBA.  相似文献   
48.
In-use micro-scale fuel use and emission rates were measured for eight cement mixer trucks using a portable emission measurement system. Each vehicle was tested on petroleum diesel and B20 biodiesel. Average fuel use and emission rates increase monotonically versus engine manifold absolute pressure. A typical duty cycle includes loading at a cement plant, transit while loaded from the cement plant to work site, creeping in a queue of vehicles at the worksite, unloading, and transit without load from the site to the plant. For B20 versus petroleum diesel, there is no significant change in the rate of fuel use, CO2 emissions, and NO emissions, and significant decreases in emissions for CO, hydrocarbons, and particulate matter. For loaded versus unloaded onroad travel, fuel use and CO2 emissions rates are approximately 60% higher and the rates for other pollutants are approximately 30–50% higher. A substantial portion of cycle emissions occurred at the work site. Inter-vehicle and intra-cycle variability are also quantified using the micro-scale methodology.  相似文献   
49.
Kim  Yeonbae  Kim  Tai-Yoo  Heo  Eunnyeong 《Transportation》2003,30(3):351-365
In this paper, we estimate a multinomial probit model of work trip mode choice in Seoul, Korea, using the Bayesian approach with Gibbs sampling. This method constructs a Markov chain Gibbs sampler that can be used to draw directly from the exact posterior distribution and perform finite sample likelihood inference. We estimate direct and cross-elasticities with respect to travel cost and the value of time. Our results show that travel demands are more sensitive to travel time than travel cost. The cross-elasticity results show that the bus has a greater substitute relation to the subway than the auto (and vice versa) and that an increase in the cost of an auto will increase the demand for bus transport more so than that of the subway.  相似文献   
50.
Automotive general assembly requires many manual assembly operations to be carried out by human workers. Ergonomic analysis is an important part of the design and evaluation of products, jobs, tools, machines and environments for safe, comfortable and effective human functioning. Most recent researches have involved the evaluation of working conditions to prevent work-related musculoskeletal disorders. The majority of previous research on automotive companies has mainly considered the results of ergonomic analyses such as RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body Assessment) and OWAS (Ovako Working Posture Analysis System). Analysis of static posture including reachability, clearances for arm, hand and tool has also been used to evaluate working conditions. However, in addition to static posture analysis, a biomechanical analysis in dynamic conditions should also be conducted. There are no integrated frameworks or standard schema for ergonomic analysis using digital human models in digital environments. The purpose of this paper is to propose a new framework for the evaluation of working conditions by ergonomic and biomechanical analysis using digital models based on XML standard schema, including: products, processes, manufacturing resources and human workers. This paper presents the analysis results using the proposed framework for automotive general assembly operations. We propose a new framework for the evaluation of the assembly operations and their environments. Then we apply a digital human model to the dynamic simulation of general automotive assembly operations based on standard schemas in XML and PPRH (Product, Process, Resource and Human). Using PPRH information based on a standard XML schema to analyze the ergonomic and biomechanical results, the engineer can visualize, analyze and improve assembly operations and working environments in automotive general assembly shops using digital models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号