首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
公路运输   2篇
水路运输   11篇
综合运输   10篇
  2020年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
Abstract

The purpose of this study was to investigate the impact of the five strikes on the London Underground (metro) rail system, which occurred in 2009 and 2010, on macroscopic and road link travel times. A consequence of these strikes was an increase in road traffic flows above usual levels. This provides an opportunity to observe the operation of the road network under unusually high flows. The first objective involves the examination of strike effects on inbound (IT) and outbound traffic (OT) within central, inner and outer London. Travel time data obtained from automatic number plate recognition cameras are used within the first part of the analysis. The second more detailed objective was to investigate in spatio-temporal effects on travel times on five road links. Correlation analyses and general linear models are developed using both traffic flow and travel time data. According to the results of the study, the morning IT had approximately twice as much delay as the OT. Central London experienced the highest delays, followed by inner and outer London. As would be expected, the unique full-day strike in 2009 yielded the worst impact on the network with the highest percentage increase in total travel time (60%) occurring during the morning peak in the IT in inner London. The results from the link-level analysis showed statistical significance amongst the examined links indicating heterogeneous effects from one link to another. It was also found that travel time changes may be more effectively captured through time-of-day terms compared to hourly traffic flows.  相似文献   
22.
This paper presents an empirical assessment of urban traffic congestion in Central London, UK. Compared with freeways or motorways, urban networks are relatively less studied because of its complexity and availability of required traffic data. This paper introduces the use of automatic number plate recognition technology to analyze the characteristic of urban traffic congestion in Central London. We also present the use of linear regression to diagnose the observed congestion and attribute them to different causes. In particular, we distinguish the observed congestion into two main components: one due to recurrent factors and the other due to nonrecurrent factors. The methodologies are illustrated through a case study of Central London Area. It is found that about 15% of the observed congestion in the region is due to nonrecurrent factors such as accidents, roadwork, special events, and strikes. Given the significance of London, the study will be valuable for transport policy evaluation and appraisal in other global cities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
23.
Although cluster analysis is recommended by the US Traffic Monitoring Guide (TMG) to supplement the development of seasonal adjustment factor groupings (SAFGs), the relationships among SAFGs' characteristics remain undiscovered, while the determination of the optimal number of clusters is an ambiguous task exposed to great subjectivity. Statistical indicators provide a mathematical solution by removing engineering judgment without taking into consideration any guidelines or other criteria, necessary for transportation planners to generate ‘practical and sensible’ groupings. The method examined in this study aims to overcome the above weaknesses incorporating into the methodology a series of statistics, recommendations, and previous research findings. The investigation of the relationships among (1) the within-group variation, (2) the total number of sites, (3) the minimum number of stations within a cluster, (4) the optimal number of clusters, and (5) the geographical size of the groups constitutes the main objectives of this research. According to the results, the cluster variability declines as the available number of stations increases. When the minimum number of stations within a cluster increases, the weighted coefficient of variation inflates as well, with the rate of increase depending on sample size. The average number of automatic traffic recorders per cluster is analogous to the sample size, while the optimal number of clusters varies conversely with the minimum number of stations within a cluster. The application developed for the conduct of the analysis minimizes the computational time needed, while it can be easily implemented by engineers to automate the process recommended by the TMG, enhancing the current state of practice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号