首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   703篇
  免费   13篇
公路运输   355篇
综合类   75篇
水路运输   156篇
铁路运输   61篇
综合运输   69篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   10篇
  2020年   13篇
  2019年   4篇
  2018年   40篇
  2017年   26篇
  2016年   37篇
  2015年   19篇
  2014年   44篇
  2013年   60篇
  2012年   59篇
  2011年   62篇
  2010年   55篇
  2009年   65篇
  2008年   59篇
  2007年   40篇
  2006年   25篇
  2005年   21篇
  2004年   11篇
  2003年   13篇
  2002年   7篇
  2001年   6篇
  2000年   12篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有716条查询结果,搜索用时 15 毫秒
231.
In recent years, a hybrid electric vehicle (HEV) has been considered a successful technology. Especially, in case of a full HEV, the motor can drive the vehicle by itself at low velocity or assist the engine at high load. To improve the hybrid electric vehicle’s efficiency, a regenerative braking system is also applied to recover from kinetic energy. In this study, an experimental control apparatus was set up with a parallel hybrid electric vehicle mounted on a chassis dynamometer to measure ECU (engine control unit) and MCU (motor control unit) signals, including the current and state of charge in the battery. In order to analyze regenerative braking characteristics, user define braking driving cycle was introduced and carried out using different initial velocities and braking times. The FTP 75 driving cycle was then adapted under different initial SOC (state of charge) levels. The experiment data was analyzed in accordance with the vehicle velocity, battery current, instant SOC level, motor RPM, engine RPM, and then vehicle driving mode was decided. In case of braking driving cycle, it was observed that SOC were increased up to 1.5 % when the braking time and the velocidy were 6 second and 60 km/h, respectively. In addition, using the FTP 75 driving cycle, mode 1 was most frequently operated at SOC 65 conditions in phase 1. In phase 2, due to frequent stop-go hills, percentage of mode 1 was increase by 22 %. Eventually, despite of identity, it was shown that the characteristics of phase 3 differed from phase 1 due to the evanishment of the effects of initial SOCs.  相似文献   
232.
A route information based driving control algorithm was developed for an RE-EV which consists of two motorgenerators, MG1 and MG2. A threshold power which controls the engine on/off to charge the battery was obtained by an optimization process using route information, such as the vehicle velocity and altitude. The threshold power allows the vehicle to travel to the final destination while making the final battery SOC close to SOC low. Using the threshold power, route based control (RBC) was proposed by considering the driver’s characteristics and traffic conditions using the driving data base. In addition, a relationship between the threshold power and various initial battery SOC was obtained by off-line optimization. The performance of the RBC was evaluated by simulation and human-in-the-loop simulation (HILS) for city driving. It was found from the simulation and HILS results that the RBC achieved approximately 4 % to 12 % reduction in fuel consumption compared to the existing charge depleting/charge sustaining (CD/CS) driving control.  相似文献   
233.
In the designing stage of subsea pipelines, the design parameters, such as pipe materials, thickness and diameters, are carefully determined to guarantee flow assurance and structural safety. However, once corrosion occurs in pipelines, the operating pressure should be decreased to prevent the failure of pipelines. Otherwise, an abrupt burst can occur in the corroded region of the pipeline, and it leads to serious disasters in the environment and financial loss. Accordingly, the relationship between the corrosion amount and failure pressure of the pipeline, i.e., the maximum operating pressure, should be investigated, and then, the assessment guideline considering the failure pressure should be identified. There are several explicit type codes that regulate the structural safety for corroded subsea pipelines, such as ASME B31G, DNV RF 101, ABS Building and Classing Subsea Pipeline Systems, and API 579. These rules are well defined; however, there are some limitations associated with describing precise failure pressure. Briefly, all of the existing rules cannot consider the material nonlinearity, such as elastoplasticity effect of the pipeline, as well as the actual three-dimensional corrosion shape. Therefore, the primary aim of this study is to suggest a modified formula parameter considering the above-mentioned pipeline and corrosion characteristics. As a result, the material nonlinearity as well as the corrosion configuration, i.e., axial/circumferential corrosion length, width and depth, is reflected in a set of finite element models and a series of finite element analysis considering the operation conditions are followed. Based on the comparative study between the simulation and analytical results, which can be obtained from the classification society rules, the modified formulae for failure pressure calculation are proposed.  相似文献   
234.
建设武汉城市圈城际轨道交通的必要性研究   总被引:1,自引:0,他引:1  
借鉴国内外城市圈城际轨道交通发展经验,分析武汉城市圈社会经济及交通现状与发展目标,从促进区域经济发展、引导城市空间布局、建设“资源节约型、环境友好型”社会、优化综合运输体系、适应城际客流需求等方面论述建设城际轨道交通的必要性。  相似文献   
235.
This paper analyzes transportation mode choice for short home-based trips using a 1999 activity survey from the Puget Sound region of Washington State, U.S.A. Short trips are defined as those within the 95th percentile walking distance in the data, here 1.40 miles (2.25 km). The mean walking distance was 0.4 miles (0.6 km). The mode distribution was automobile (75%), walk (23%), bicycle (1%), and bus (1%). Walk and bicycle are found less likely as the individual’s age increases. People are more likely to drive if they can or are accustomed to. People in multi-person families are less likely to walk or use bus, especially families with children. An environment that attracts people’s interest and provides activity opportunities encourages people to walk on short trips. Influencing people’s choice of transport mode on short trips should be an important part of efforts encouraging the use of non-automobile alternatives.
Gudmundur F. UlfarssonEmail:
  相似文献   
236.
Increasing fuel economy has been a central issue in the development of new cars, and one of the important strategies to improve fuel economy is to decrease vehicle weight. In order to obtain this goal, researchers have sought to make bumpers lighter without sacrificing strength, ability to absorb impact, or passenger safety. In this study, the effects of structural variables on the torsional stiffness of a body bumper impact beam were analyzed for possible weight reduction. To this end, the effects of variation of section height, increase of impact beam thickness and the addition of stays in a bumper impact beam were carefully investigated and compared. Among these, the most effective way to increase the torsional stiffness of the bumper impact beam was found to be increasing the section height. In addition, the potential for overall weight reduction of the impact beam was examined by comparing the crash capability of a bumper using conventional steels with that of high-strength steel (boron steel) with a tensile strength of 1.5 GPa. This analysis could serve as a guide to design for optimal bumper impact beam development.  相似文献   
237.
The excitation force of a powertrain is one of major sources of interior noise in a vehicle. This paper presents a novel approach to predict the interior noise caused by the vibration of the powertrain by using the hybrid TPA (transfer path analysis) method. Although the traditional transfer path analysis (TPA) is useful for the identification of powertrain noise sources, it is difficult to modify the structure of a powertrain by using experiments for the reduction of vibration and noise. In order to solve this problem, the vibration of the powertrain in a vehicle is numerically analyzed by using the finite element method (FEM). The vibration of the other parts of the vehicle is investigated by using experiments based on vibrato-acoustic transfer function (VATF) analysis. These two methods are combined for the prediction of interior noise caused by a powertrain. Throughout this research, two papers are presented. This paper presents a simulation of the excitation force of the powertrain exciting the vehicle body based on numerical simulation. The other paper presents a prediction of interior noise based on the hybrid TPA, which uses the VATF of the car body and the excitation force predicted in this paper.  相似文献   
238.
A fully three-dimensional model was used to investigate the optimal value for intake valve lift in a CAI engine. Uniform mixing in the engine is a key parameter that affects the auto-ignition reliability and thermal efficiency. The method of intake of the air supply often determines the uniformity (or quality) of the fuel-air mixture. In this paper, four strategies were applied for controlling the swirl intensity of intake air. The variation of the intake valve lift induces different swirling and tumbling intensities. Both experimental data and 1D WAVE software (Ricardo, Co.) were coupled with the 3D model to provide pressure and temperature boundary conditions. The initial condition of the EGR mass fraction was also provided by the 1D model. The benchmark scenario (Case 1) was considered as a valve lift with 2 mm for all intake valves. We found that an intake valve lift of 6 mm with the other intake valve closed (i.e., Case 5) yielded the largest swirling (helical motion in the axial direction) and tumbling, which in turn rendered optimal fuel-gas mixing. We also found that fuel distribution affected the auto-ignition sites (or spot). The better the mixing, the greater the gas temperature and combustion efficiency achieved, as seen in Case 5. The NOx level, however, was increased due to the gas temperature. The optimal operating condition is selected from the viewpoints of environmental protection and combustion efficiency.  相似文献   
239.
The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle systems for all possible dynamic situations, including the worst case scenarios such as rollover, spin-out and so on. Although the known NHTSA Sine with Dwell steering maneuvers have been applied for the vehicle performance assessment, they are not enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst case scenarios, including the existing severe steering maneuvers. This paper includes useful worst case scenarios based upon the existing worst case scenarios mentioned above and worst case evaluation for the vehicle dynamic controller in a simulation basis and UCC HILS. The only human steering angle was selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case scenario to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.  相似文献   
240.
The ESC system, since its introduction in the mid 90s, has greatly contributed to prevention of vehicle accidents with its capability of maintaining vehicle stability in severe driving conditions. Due to its significant advantages, many nations are now adopting regulations that mandate installation of the ESC system in all classes of passenger vehicles — from mini to luxury. Accordingly it became important to know whether an ESC ECU can yield good performance on a wide range of vehicle parameter changes. In this paper, robustness analysis was conducted to study how characteristic variation of the main chassis components affect the performance of the ESC ECU. This analysis was carried out using a HILS system built on an actual ESC ECU. The variation range of each chassis component was carefully selected considering the component’s design criteria adopted in automotive industries. Based upon the robustness analysis results, the allowable variation ranges of the chassis components for ensuring sound performance of an ESC ECU were proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号