全文获取类型
收费全文 | 3154篇 |
免费 | 18篇 |
专业分类
公路运输 | 760篇 |
综合类 | 700篇 |
水路运输 | 964篇 |
铁路运输 | 25篇 |
综合运输 | 723篇 |
出版年
2023年 | 9篇 |
2022年 | 24篇 |
2021年 | 15篇 |
2020年 | 12篇 |
2019年 | 23篇 |
2018年 | 363篇 |
2017年 | 331篇 |
2016年 | 320篇 |
2015年 | 21篇 |
2014年 | 76篇 |
2013年 | 202篇 |
2012年 | 125篇 |
2011年 | 279篇 |
2010年 | 289篇 |
2009年 | 105篇 |
2008年 | 253篇 |
2007年 | 158篇 |
2006年 | 30篇 |
2005年 | 77篇 |
2004年 | 63篇 |
2003年 | 69篇 |
2002年 | 30篇 |
2001年 | 17篇 |
2000年 | 30篇 |
1999年 | 18篇 |
1998年 | 13篇 |
1997年 | 17篇 |
1996年 | 22篇 |
1995年 | 25篇 |
1994年 | 9篇 |
1993年 | 16篇 |
1992年 | 14篇 |
1991年 | 11篇 |
1990年 | 4篇 |
1988年 | 11篇 |
1987年 | 5篇 |
1986年 | 10篇 |
1985年 | 10篇 |
1984年 | 6篇 |
1983年 | 4篇 |
1982年 | 7篇 |
1981年 | 5篇 |
1980年 | 5篇 |
1979年 | 6篇 |
1978年 | 4篇 |
1977年 | 5篇 |
1976年 | 3篇 |
1975年 | 7篇 |
1974年 | 5篇 |
1973年 | 4篇 |
排序方式: 共有3172条查询结果,搜索用时 15 毫秒
81.
Yutong Li Andreas Hansen J. Karl Hedrick 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(12):1823-1841
Active control of electric powertrains is challenging, due to the fact that backlash and structural flexibility in transmission components can cause severe performance degradation or even instability of the control system. Furthermore, high impact forces in transmissions reduce driving comfort and possibly lead to damage of the mechanical elements in contact. In this paper, a nonlinear electric powertrain is modelled as a piecewise affine (PWA) system. The novel receding horizon sliding control (RHSC) idea is extended to constrained PWA systems and utilised to systematically address the active control problem for electric powertrains. Simulations are conducted in Matlab/Simulink in conjunction with the high fidelity Carsim software. RHSC shows superior jerk suppression and target wheel speed tracking performance as well as reduced computational cost over classical model predictive control (MPC). This indicates the newly proposed RHSC is an effective method to address the active control problem for electric powertrains. 相似文献
82.
The management of vehicle travel times has been shown to be fundamental to traffic network analysis. To collect travel time measurement, some methods focus solely on isolated links or highway segments, and where two measurement points, at the beginning and at the end of a section, are deemed sufficient to evaluate users' travel time. However, in many cases, transport studies involve networks in which the problem is more complex. This article takes advantage of the plate scanning technique to propose an algorithm that minimizes the required number of registering devices and their location in order to identify vehicles candidates to compute the travel times of a given set of routes (or subroutes). The merits of the proposed method are explained using simple examples and are illustrated by its application to the real network of Ciudad Real. 相似文献
83.
Bo-yan Xu Xiang-long Liu Long-long Jiang Juan Xu 《International Journal of Automotive Technology》2017,18(3):489-497
To obtain an ultralean air-fuel ratio and to reduce engine-out NOX and HC emissions induced by the richer mixture near the spark plug, a spray and wall complex guided combustion system has been developed by utilizing the fuel characteristics of LPG. The new combustion system configuration is optimized by using a commercial CFD code, FIRE V2013, and the reliability of the system has been experimentally demonstrated by Plane Laser-Induced Fluorescence (PLIF). The mixture formation in the new combustion system under part load (2,000 rpm) is numerically simulated. With an injection timing of 40°CA BTDC, the LPG spray which is injected from two upper holes, reaches the ignition point, and the other part of the LPG spray which is injected from the bottom hole, is directed to the ignition point through the vertical vortices at the same time. At the ignition timing of about 20°CA BTDC, the two-part mixtures have been shown to form a stable and richer stratified mixture around the ignition point, and the maximum global air-fuel ratio reaches to 60: 1. 相似文献
84.
Edmondo Di Pasquale Daniel Coutellier 《International Journal of Automotive Technology》2017,18(4):631-642
Head on bonnet impact is becoming more and more important in automotive design as regulations on pedestrian safety become more demanding. Despite the relatively low amount of energy involved, these impacts are truly dynamic phenomena as the event duration is comparable with the traveling time of the different wavefronts generated by the impact. In this paper, we show that we can build up a simplified model for the impact based on wave propagation analysis. Using this model, we can analyze head acceleration on existing bonnets or predict it on new ones. Head acceleration in a bonnet impact can thus be estimated over the whole area of the bonnet with a few minutes of CPU. 相似文献
85.
Jinyoung Jang Youngjae Lee Ohseok Kwon 《International Journal of Automotive Technology》2017,18(5):751-758
This study was conducted to examine the impact of aged and new DPF systems of the Euro 5 diesel passenger car on fuel efficiency and exhaust emissions. Test diesel vehicle used in this study was equipped with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) as aftertreatment systems, and satisfied the Euro-5 emissions standard. The displacement volume of engine was 1.6 L and the cumulative mileage was 167,068 km before the test. The FTP-75 test procedure was used, and the time resolved and weight based exhaust emissions of total hydrocarbon (THC), carbon monoxide (CO) and nitrogen oxides (NOx) were measured. The results show that the vehicle with the new DPF system has lower emissions of THC, CO and NOx than the aged one, and fuel efficiency also increased about 5 percent. The aged DPF system had higher backpressure due to the particulate matter (mostly in the form of ash) accumulated in the DPF. As was shown in the analysis using X-CT (X-ray computer tomography), the aged DPF system had particulate matter (PM) accumulated to a length of 46.6 mm. In addition, a component analysis of PM through XRF (X-ray fluorescence) analysis found that 50 % or more of the components consisted of the P, S, Ca, and Zn. 相似文献
86.
Peng Hang Xinbo Chen Shude Fang Fengmei Luo 《International Journal of Automotive Technology》2017,18(5):785-797
A four-wheel-independent-steering (4WIS) electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. The fast terminal sliding mode controller (FTSMC) is designed for the SBW system to suppress external disturbances. Taking unstructured and structured uncertainties into consideration, a robust controller is designed for the 4WIS EV utilizing μ synthesis approach and the controller order reduction is implemented based on Hankel-Norm approximation. Since sideslip angle is the feedback signal of robust controller and it is hard to measure, the extended Kalman filter (EKF) is employed to estimate sideslip angle. To evaluate the vehicle performance with the designed control system, step and sinusoidal steering maneuvers are simulated and analyzed. Simulation results show that the designed control system have good tracking ability, strong robust stability and good robust performance to improve vehicle stability and handing performance. 相似文献
87.
Han-Wool Lee Jin-Rae Cho Weui-Bong Jeong 《International Journal of Automotive Technology》2017,18(5):823-832
For the numerical simulation of tire rolling noise, an important subject is the extraction of normal velocity data of the tire surface that are essential for the acoustic analysis. In the current study, a concept of periodically exciting contact force is introduced to effectively extract the tire normal velocity data. The ground contact pressure within contact patch that is obtained by the static tire contact analysis is periodically applied to the whole tread surface of stationary tire. The periodically exciting contact forces are sequentially applied with a time delay corresponding to the tire rolling speed. The tire vibration is analyzed by the mode superposition in the frequency domain, and the acoustic analysis is performed by commercial BEM code. The proposed method is illustrated through the numerical experiment of 3-D smooth tire model and verified from the comparison with experiment, and furthermore the acoustical responses are investigated to the tire rolling speed. 相似文献
88.
Hyung Yun Choi Jaeho Shin Chang Jin Oh Jin Ho Bae 《International Journal of Automotive Technology》2017,18(5):851-860
Injury information for vehicle occupants from the body regions of the head, thorax, abdomen, and upper and lower extremities, due to the restraints and interior parts of the vehicle, were extracted from the 2009 ~ 2012 NASS/CDS database. For those cases with high occurrence frequency, a detailed and comprehensive data analysis was performed to find the relationship between the accident, occupant, vehicle, and injury data. A numerical frontal impact sled model with the Hybrid III dummy and the GHBMC human body model was constructed to simulate and identify those injury risks according to NASS/CDS. Among the 5,734 injuries to the aforementioned body regions from frontal crashes are, listed by frequency of occurrence, the lower extremity (27.8 %), upper extremity (21.3 %), thorax (15.1 %), face (10.9 %), spine (8.7 %), head (7.3 %), and abdomen (6.9 %). The main injury sources to the head were the windshield, side structure, and steering wheel. For the thorax and abdomen they were the seat belt and steering wheel. For the lower extremity it was the instrument panel. The main injury patterns for the head were the concussion and the contusion. For the thorax they were vessel laceration and lung contusion. For the abdomen they were laceration and contusion of the organs. For the lower extremity they were bone fracture and ligament rupture. The steering wheel and seat positions were main factors affecting head and thorax injury risks. From the sled impact simulation, high injury risks of the head and thorax were assessed respectively at conditions of steering column tilt down and rear most seat position, which correlated well with the findings from the NASS/CDS data analysis. 相似文献
89.
Sönke Kraft Julien Causse Frédéric Coudert 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2018,56(2):190-220
The assessment of the geometry of railway tracks is an indispensable requirement for safe rail traffic. Defects which represent a risk for the safety of the train have to be identified and the necessary measures taken. According to current standards, amplitude thresholds are applied to the track geometry parameters measured by recording cars. This geometry-based assessment has proved its value but suffers from the low correlation between the geometry parameters and the vehicle reactions. Experience shows that some defects leading to critical vehicle reactions are underestimated by this approach. The use of vehicle responses in the track geometry assessment process allows identifying critical defects and improving the maintenance operations. This work presents a vehicle response-based assessment method using multi-body simulation. The choice of the relevant operation conditions and the estimation of the simulation uncertainty are outlined. The defects are identified from exceedances of track geometry and vehicle response parameters. They are then classified using clustering methods and the correlation with vehicle response is analysed. The use of vehicle responses allows the detection of critical defects which are not identified from geometry parameters. 相似文献
90.
Donghoon Kim Stephen Sungsan Park Choongsik Bae 《International Journal of Automotive Technology》2018,19(1):1-8
Three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures in a constant volume chamber. Fuels were injected into a high pressure/high temperature chamber under the same in-cylinder pressure and temperature conditions of low load in a GDCI (gasoline direct injection compression ignition) engine. Two injection pressures (40 MPa and 80 MPa), two ambient pressures (4.2 MPa and 1.7 MPa), and two ambient temperatures (908 K and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. Vapor developments of the two fuels were similar; however, different liquid developments were seen. At the same injection pressure and ambient temperature, gasoline liquid propagated more quickly and disappeared more rapidly than diesel liquid phase. At the low ambient temperature and pressure condition, gasoline and diesel sprays with higher injection pressures showed longer liquid lengths due to higher spray momentum. At the higher ambient temperature condition, the gasoline liquid length was shorter for the higher injection pressure. Higher volatility of gasoline is the main reason for this shorter liquid length under higher injection pressure and higher ambient temperature conditions. For a design of GDCI engine, it is necessary to understand the higher volatility of gasoline. 相似文献