Understanding the process of activity scheduling is a critical pre-requisite to an understanding of changes in travel behavior. To examine this process, a computerized survey instrument was developed to collect household activity scheduling data. The instrument is unique in that it records the evolution of activity schedules from intentions to final outcomes for a weekly period. This paper summarizes an investigation of the structure of activity/travel patterns based on data collected from a pilot study of the instrument. The term “structure” refers to the sequence by which various activities enter one’s daily activity scheduling process. Results of the empirical analyses show that activities of shorter duration were more likely to be opportunistically inserted in a schedule already anchored by their longer duration counterparts. Additionally, analysis of travel patterns reveals that many trip-chains were formed opportunistically. Travel time required to reach an activity was positively related to the scheduling horizon for the activity, with more distant stops being planned earlier than closer locations. 相似文献
This study investigates how the introduction of electric vehicles may influence the usage of existing cars. A survey of 250 households in South Korea is used to analyze a future automobile market that includes electric vehicles taking into account the heterogeneity of consumer preferences and usage patterns. Based on consumer preferences, the future market share of various vehicles is estimated and the impact of promoting the usage of electric vehicles by government subsidization and tax incentives is analyzed. 相似文献
A frictional torque was generated by a lubricated slip contact between a wet clutch pad and a steel separator during a wet clutch engagement. It is necessary to understand the generation of frictional torque to improve the performance of the frictional torque transfer and the durability of the wet clutch system. The analytical modeling of wet clutch torque transfer considers the effects of surface roughness, permeability, the elastic modulus of the frictional material, lubricant viscosity, temperature, etc. Experimental apparatus for wet clutch engagement was designed for the measurement of frictional torque transfer during wet clutch engagement. The experimental results were compared with the analytical results under various operational conditions for the verification of the theoretical analysis to evaluate the performance of the wet clutch system. Some correlations were investigated between the experimental and analytical results. We found that computation by analytical modeling can predict the effects of oil temperature, applied force, and slip speed, as well as engagement period and frictional torque transfer shapes. 相似文献
In this study, a model-based integrated control method for engines and continuous variable transmissions (CVTs) is developed. CVT refers to a type of transmission which allows an engine to be operated independently with respect to the vehicle speed, with the engine torque and CVT gear ratio controlled in an integrated manner. In the proposed integrated control scheme, engine operating points which minimize the rate of instantaneous fuel consumption are calculated, and the engine target torque and target gear ratio are determined in an integrated manner based on the results of the calculations. Unlike the previous map-based control method, the method introduced in this study does not require an engine torque map or a CVT ratio map for tuning, and the engine torque and CVT ratio are controlled to minimize the amount of fuel used while satisfying the level of acceleration demand from the driver. The control scheme is based on the powertrain model, and the CVT response lag and transmission loss are also considered in the integrated control processes. The algorithm is simulated with various driving cycles, with the simulation results showing that the fuel economy performance of the vehicle system is improved with the newly suggested engine-CVT integrated control algorithm. 相似文献
This paper considers a multimodal transportation problem, which is the problem of determining the transportation flow, i.e. volume of container cargoes, and the transportation mode in each trade route, for the objective of minimizing the sum of shipping and inland transportation costs. The problem takes account of two restrictions: maximum cargo volumes capacitated at each seaport and maximum number of vehicles available at each transportation mode. To solve optimally the problem, this paper employs a mixed integer programming, which is an operations research technique. A case study is performed on the container cargo data in Korea and we draw several implications to improve efficiency in the transportation of international trade cargoes in Korea. 相似文献
Shipbuilding industries have started to employ 3D CAD systems to integrate all design and production processes by achieving seamless data transfer and data sharing. The emerging 3D CAD system brings a considerable change in FE analysis field. The availability of 3D geometry increased the recognition of the need for developing automatic FE modeling system consequently.
However, general automatic mesh algorithms developed by academic research field have a limitation. The difficulty in satisfying lots of line constraints and the absence of proper idealization of 3D geometry entities defined in CAD system hinders directly employing the general mesh algorithms.
In this research, an automatic FE modeling system has been developed for cargo hold FE modeling and whole ship FE modeling. The basic concept of the algorithm is to decompose surfaces using stiffener lines into subregions and generate mesh using a rule established based on FE modeling practice of ship structure. Since the decomposed subregions take simple polygon, they can be easily transformed into elements by decomposing the polygon according to the rule defined considering the shape of the polygon and mesh seed on its perimeter. The algorithm is also designed to treat appropriate geometry idealizations for bracket-type surface and stiffener connections. The idealization process is also completely customized based on FE modeling practice. The validity of the developed system is verified through illustrative examples. 相似文献
Conventionally a phase-shift detection method (PSDM) and a frequency-shift detection method (FSDM) have been used in loop detectors. The PSDM has a fast response time and is very effective in detecting vehicles traveling at normal speeds. However, it is well known that the detection results are erroneous for vehicles traveling at low speeds in heavy traffic conditions. On the other hand, the FSDM greatly improves the detector performance for heavy traffic conditions. However, this method is not effective in fast and normal traffic conditions. Thus, in order to collect accurate traffic data for all traffic conditions, this paper proposes combining two methods using the digital OR logic. In the developed circuit, a phase-locked loop (PLL) circuit is used for measuring the phase change. This paper also develops a new loop detector instrumentation method using the so-called M circuit for detecting frequency change. The developed method has been tested for various traffic conditions. Experimental results show that the new combined M and PLL detection method greatly improves the accuracy in all traffic conditions, reducing the error rate in measuring traffic flow by more than 83%, when compared to the PSDM. 相似文献