首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3688篇
  免费   21篇
公路运输   569篇
综合类   968篇
水路运输   1149篇
铁路运输   171篇
综合运输   852篇
  2023年   14篇
  2022年   47篇
  2021年   27篇
  2020年   20篇
  2019年   22篇
  2018年   378篇
  2017年   321篇
  2016年   301篇
  2015年   32篇
  2014年   43篇
  2013年   227篇
  2012年   154篇
  2011年   332篇
  2010年   315篇
  2009年   162篇
  2008年   268篇
  2007年   225篇
  2006年   98篇
  2005年   132篇
  2004年   63篇
  2003年   69篇
  2002年   36篇
  2001年   29篇
  2000年   41篇
  1999年   21篇
  1998年   32篇
  1997年   17篇
  1996年   19篇
  1995年   36篇
  1994年   9篇
  1993年   22篇
  1992年   8篇
  1991年   12篇
  1990年   8篇
  1989年   8篇
  1987年   11篇
  1986年   10篇
  1985年   18篇
  1984年   13篇
  1983年   13篇
  1982年   11篇
  1981年   16篇
  1980年   8篇
  1979年   8篇
  1978年   12篇
  1977年   8篇
  1976年   7篇
  1975年   6篇
  1973年   8篇
  1972年   6篇
排序方式: 共有3709条查询结果,搜索用时 15 毫秒
991.
斜楔减振器是三大件转向架极其重要的元件,斜楔提供的各向等效刚度对货车的动力学性能及减振性能有重要影响.为了分析斜楔等效刚度作用,根据力学原理对斜楔进行准静态分析,研究摇枕、侧架和斜楔三者的受力情况及位移关系,得出斜楔提供的垂向刚度、横向刚度、纵向刚度以及抗菱刚度的解析表达式.运用Abaqus有限元软件建立转K6转向架模...  相似文献   
992.
A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process rates can be especially fast in the shallow water. We used the model to explore the potential significance of hydrodynamic connectivity between a channel and shoal and whether lateral transport can allow physical or biological processes (e.g. stratification, benthic grazing, light attenuation) in one sub-region to control phytoplankton biomass and bloom development in the adjacent sub-region. Model results for South San Francisco Bay suggest that lateral transport from a productive shoal can result in phytoplankton biomass accumulation in an adjacent deep, unproductive channel. The model further suggests that turbidity and benthic grazing in the shoal can control the occurrence of a bloom system-wide; whereas, turbidity, benthic grazing, and vertical density stratification in the channel are likely to only control local bloom occurrence or modify system-wide bloom magnitude. Measurements from a related field program are generally consistent with model-derived conclusions.  相似文献   
993.
在水上部分构件外观检查的基础上,通过对混凝土构件的强度、钢筋保护层厚度、钢筋锈蚀情况和氯离子含量分布情况等建筑材料的性能参数进行检测,综合分析某高桩码头的各项检测结果和结构现状,为该码头制定维修加固方案提供科学依据,也可为相关技术研究提供参考.  相似文献   
994.
当前浮式平台船体结构分析的方法与重点综述(英文)   总被引:2,自引:0,他引:2  
浮式平台概念的选择及其结构设计是深水工程项目的关键环节之一.它决定了平台在波浪载荷作用下的动力学响应、立管在深水条件下的运动以及进行平台建造与安装的技术难度等.结构强度、结构的抗疲劳性能以及结构的整体和局部稳定性能是浮式平台设计必须重点考虑的三个主要方面.总结了当前浮式平台设计的主要方法和它的主要任务以及技术要求,着重分析了设计过程中的主要技术难点及重点;最后,讨论了浮式平台结构设计的潜在发展趋势.  相似文献   
995.
大体积混凝土基础施工与温度控制   总被引:1,自引:0,他引:1  
长沙洪山大桥基础属大体积混凝土结构,施工期间适逢长沙地区进入雨季,河水上涨,对此,确定了合理的混凝土浇筑顺序,采用水平分层、斜向分段的总体施工方案;在具体施工过程中,通过采取优化混凝土配合比、双掺技术、设置循环冷却水管和现场监测混凝土内部及表面的温度等技术措施,成功地控制了温度和混凝土裂缝的产生,确保了该大体积混凝土结构的施工质量.  相似文献   
996.
The paper presents a life-cycle assessment of costs and greenhouse gas emissions for transit buses deploying a hybrid input-output model to compare ultra-low sulfur diesel to hybrid diesel-electric, compressed natural gas, and hydrogen fuel-cell. We estimate the costs of emissions reductions from alternative fuel vehicles over the life cycle and examine the sensitivity of the results to changes in fuel prices, passenger demand, and to technological characteristics influencing performance and emissions. We find that the alternative fuel buses reduce operating costs and emissions, but increase life-cycle costs. The infrastructure requirement to deploy and operate alternative fuel buses is critical in the comparison of life-cycle emissions. Additionally, efficient bus choice is sensitive to passenger demand, but only moderately sensitive to technological characteristics, and that the relative efficiency of compressed natural gas buses is more sensitive to changes in fuel prices than that of the other bus types.  相似文献   
997.
In the US, the rise in motorized vehicle travel has contributed to serious societal, environmental, economic, and public health problems. These problems have increased the interest in encouraging non-motorized modes of travel (walking and bicycling). The current study contributes toward this objective by identifying and evaluating the importance of attributes influencing bicyclists’ route choice preferences. Specifically, the paper examines a comprehensive set of attributes that influence bicycle route choice, including: (1) bicyclists’ characteristics, (2) on-street parking, (3) bicycle facility type and amenities, (4) roadway physical characteristics, (5) roadway functional characteristics, and (6) roadway operational characteristics. The data used in the analysis is drawn from a web-based stated preference survey of Texas bicyclists. The results of the study emphasize the importance of a comprehensive evaluation of both route-related attributes and bicyclists’ demographics in bicycle route choice decisions. The empirical results indicate that travel time (for commuters) and motorized traffic volume are the most important attributes in bicycle route choice. Other route attributes with a high impact include number of stop signs, red light, and cross-streets, speed limits, on-street parking characteristics, and whether there exists a continuous bicycle facility on the route.
Chandra R. Bhat (Corresponding author)Email:

Ipek N. Sener   is currently a Ph.D. candidate in transportation engineering at The University of Texas at Austin. She received her M.S. degrees in Civil Engineering and in Architecture, and her B.S. degree in Civil Engineering from the Middle East Technical University in Ankara, Turkey. Naveen Eluru   is currently a Ph.D. candidate in transportation engineering at The University of Texas at Austin. He received his M.S. degree in Civil Engineering from The University of Texas at Austin, and his Bachelors in Technology Degree from Indian Institute of Technology in Madras, India. Chandra R. Bhat   is a Professor in Transportation at The University of Texas at Austin. He has contributed toward the development of advanced econometric techniques for travel behavior analysis, in recognition of which he received the 2004 Walter L. Huber Award and the 2005 James Laurie Prize from the American Society of Civil Engineers (ASCE), and the 2008 Wilbur S. Smith Distinguished Transportation Educator Award from the Institute of Transportation Engineers (ITE). He is the immediate past chair of the Transportation Research Board Committee on Transportation Demand Forecasting and the International Association for Travel Behaviour Research.  相似文献   
998.
This paper develops a comprehensive approach to the definition of transportation analysis zones (TAZ), and therein, presents a new methodology and algorithm for the definition of TAZ embedded in geographic information systems software, improves the base algorithm with several local algorithms, and comprehensively analyses the obtained results. The results obtained are then compared to these presently used in the transportation analysis process of the Lisbon Metropolitan Area. The proposed algorithm presents a new methodology for TAZ design based on a smoothed density surface of geocoded travel demand data. The algorithm aims to minimise the loss of information when moving from a continuous representation of the origin and destination of each trip to their discrete representations through zones, and focuses on the trade-off between the statistical precision, geographical error, and the percentage of intra-zonal trips of the resulting OD matrix. The results for the Lisbon Metropolitan Area case study suggest a significant improvement in OD matrix estimates compared to current transportation analysis practises based on administrative units.
Elisabete A. SilvaEmail:

Luis M. Martínez   is a Civil Engineer from the Instituto Superior Técnico, Technical University of Lisbon since 2004. After finishing his degree, he started his work as researcher in the CESUR (Civil Engineering & Architecture Department—Instituto Superior Técnico) where he has been working since. In 2006 he completed his Master Thesis at Instituto Superior Técnico on Traffic Analysis Zones modeling and started his PhD studies on the theme: Metropolitan Transportation Systems Financing Using the Value Capture Concept. José Manuel Viegas   is Full Professor of Transportation at the Civil Engineering & Architecture Department of the Instituto Superior Técnico, Technical University of Lisbon. He has worked extensively in Modeling, Innovation and Policy in several types of Transport Systems. He was founder and first Director General of Transportnet, a group of eight leading European Universities with Advanced Studies in Transportation, and currently leads the Portuguese side of the Transportation Systems area in the MIT—Portugal program. Elisabete A. Silva   is at the University of Cambridge (University Lecturer in Planning at the Department of Land Economy and a Fellow of Robinson College). With more than 100 contributions in peer review journals, books/books chapters, conference proceedings, and a research track record of approximately 16 years, (both at the public and private sector), her research interests are centred on the application of new technologies to spatial planning in particular city and metropolitan dynamic modelling through time.  相似文献   
999.
In this paper, a joint model of vehicle type choice and utilization is formulated and estimated on a data set of vehicles drawn from the 2000 San Francisco Bay Area Travel Survey. The joint discrete–continuous model system formulated in this study explicitly accounts for common unobserved factors that may affect the choice and utilization of a certain vehicle type (i.e., self-selection effects). A new copula-based methodology is adopted to facilitate model estimation without imposing restrictive distribution assumptions on the dependency structures between the errors in the discrete and continuous choice components. The copula-based methodology is found to provide statistically superior goodness-of-fit when compared with previous estimation approaches for joint discrete–continuous model systems. The model system, when applied to simulate the impacts of a doubling in fuel price, shows that individuals are more likely to shift vehicle type choices than vehicle usage patterns.
Chandra R. Bhat (Corresponding author)Email:

Erika Spissu   is currently a Research Fellow at the University of Cagliari (Italy). She received her Ph.D. from the University of Palermo and University of Cagliari (Italy) in Transport techniques and economics. She spent the past 2 years at The University of Texas at Austin as a Research Scholar focusing primarily in activity-based travel behavior modeling, time use analysis, and travel demand forecasting. Abdul Pinjari   is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of South Florida, Tampa. His research interests include time-use and travel-behavior analysis, and activity-based approaches to travel-demand forecasting. He has his Ph.D. from The University of Texas at Austin. Ram M. Pendyala   is a Professor of Transportation Systems in the Department of Civil, Environmental, and Sustainable Engineering at Arizona State University. He teaches and conducts research in travel behavior analysis, travel demand modeling and forecasting, activity-based microsimulation approaches, and time use. He specializes in integrated land use-transport models, transport policy formulation, and public transit planning and design. He is currently the Vice-Chair of the International Association for Travel Behavior Research and is the immediate past chair of the Transportation Research Board Committee on Traveler Behavior and Values. He has his PhD from the University of California at Davis. Chandra R. Bhat   is a Professor in Transportation at The University of Texas at Austin. He has contributed toward the development of advanced econometric techniques for travel behavior analysis, in recognition of which he received the 2004 Walter L. Huber Award and the 2005 James Laurie Prize from the American Society of Civil Engineers (ASCE), and the 2008 Wilbur S. Smith Distinguished Transportation Educator Award from the Institute of Transportation Engineers (ITE). He is the immediate past chair of the Transportation Research Board Committee on Transportation Demand Forecasting and the International Association for Travel Behaviour Research.  相似文献   
1000.
This paper presents estimates of the rebound effect and other elasticities for the Canadian light-duty vehicle fleet using panel data at the provincial level from 1990 to 2004. We estimate a simultaneous three-equation model of aggregate demand for vehicle kilometers traveled, vehicle stock and fuel efficiency. Price and income elasticities obtained are broadly consistent with those reported in the literature. Among other results, an increase in the fuel price of 10% would reduce driving by ~2% in the long term and by 1% the average fuel consumption rate. Estimates of the short- and long-term rebound effects are ~8 and 20%, respectively. We also find that an increase in the gross domestic product per capita of 10% would cause an increase in driving distance of 2–3% and an increase of up to 4% in vehicle stock per adult. In terms of policy implications, our results suggest that: (1) the effectiveness of new fuel efficiency standards will be somewhat mitigated by the rebound effect and (2) fuel price increases have limited impacts on gasoline demand.
Philippe BarlaEmail:

Philippe Barla   is full professor at the economics department of Université Laval. He is currently the director of the research center GREEN and is a member of CDAT. He is conducting theoretical and empirical research on energy efficiency in the transportation sector. Bernard Lamonde   obtained his MA in economics in 2007 working on this project. He is working as an economist for Agence de l’efficacité énergique du Québec. Luis Miranda-Moreno   is professor at McGill Department of Civil Engineering and Applied Mechanics. He was post-doctoral student at CDAT when this research was carried out. His research interests include road safety, travel behaviour and demand modeling. Nathalie Boucher   holds a PhD in economics from Queens’ University. She is the executive director the CDAT a research center dedicated to improving knowledge about energy use in the Canadian private and commercial transportation sector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号