首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2945篇
  免费   22篇
公路运输   959篇
综合类   105篇
水路运输   936篇
铁路运输   89篇
综合运输   878篇
  2023年   14篇
  2022年   53篇
  2021年   28篇
  2020年   22篇
  2019年   28篇
  2018年   86篇
  2017年   81篇
  2016年   122篇
  2015年   37篇
  2014年   109篇
  2013年   453篇
  2012年   154篇
  2011年   161篇
  2010年   136篇
  2009年   154篇
  2008年   140篇
  2007年   91篇
  2006年   64篇
  2005年   61篇
  2004年   46篇
  2003年   45篇
  2002年   44篇
  2001年   41篇
  2000年   52篇
  1999年   35篇
  1998年   45篇
  1997年   49篇
  1996年   49篇
  1995年   71篇
  1994年   26篇
  1993年   35篇
  1992年   29篇
  1991年   24篇
  1990年   18篇
  1989年   14篇
  1988年   20篇
  1987年   21篇
  1986年   16篇
  1985年   25篇
  1984年   25篇
  1983年   18篇
  1982年   25篇
  1981年   32篇
  1980年   28篇
  1979年   40篇
  1978年   21篇
  1977年   21篇
  1976年   11篇
  1975年   18篇
  1974年   15篇
排序方式: 共有2967条查询结果,搜索用时 15 毫秒
231.
The method of numerical multi-body simulation is an often used and well-understood development tool in the automotive industry. In order to reproduce the ride comfort or handling behaviour of vehicles, mathematical models have to be built up. To achieve accurate simulation results, highly detailed component models are required. However, the formulation of appropriate physically-based model equations of complex automotive components (e.g. air springs, shock absorbers, rubber bearings, tyres, etc.) can be very difficult. To handle this, empirical modelling methods have been developed. Simple algebraic equations are used to describe complex system behaviour. This simplification is very effective, although it largely ignores the natural laws of mechanics and thermodynamics but is still capable to predict the component response. This article illustrates how to take advantage of this approach in numerical simulations. We describe the development of a hybrid automotive shock absorber model based on both spline and neural network (NN) approaches. By combining these different approaches, an accurate model is achieved without loss of variability. Non-isothermal laboratory force-displacement measurements of an automotive shock absorber are being used to estimate the parameters of the NN. As shown, the model replicates the measured data with sufficient accuracy, especially the hysteresis. Finally, we present a set of quarter-car simulations with a built-in hybrid NN shock absorber.  相似文献   
232.
The article reports an experimental study of driver steering control behaviour in a lane-change manoeuvre. Eight test subjects were instrumented with electromyography to measure muscle activation and co-contraction. Each subject completed 30 lane-change manoeuvres with one vehicle on a fixed-base driving simulator. For each driver, the steering torque feedback characteristic was changed after every ten manoeuvres; the response of the vehicle to steering angle inputs was not changed. Drivers' control strategies were found to be robust to changes in steering torque feedback. Path-following errors, muscle activity and muscle co-contraction all reduce with the number of lane-changes performed by the driver, suggesting the existence of a learning process. Comparing the test subjects, there was some evidence that high levels of co-contraction were used to allow high-frequency steering inputs to be generated. The results contribute to the understanding of vehicle-driver (and more generally, human-machine) dynamic interaction.  相似文献   
233.
Conventional geared transmissions use some kinds of clutches to control the power flow from an internal combustion engine to the driveline while shifting gears. However, the shifting performance is seriously affected by the clutch engagement and an unavoidable drop in the torque may occur when the clutch is disconnected. Moreover, wear of the clutch, the need for hydraulic equipment, and the load limit may together aggravate the limits of the clutch system. For this reason, as a novel transmission without a clutch, the clutchless geared smart transmission (henceforth CGST) is proposed by our research team. The CGST controls the power flow in a multiple-input gear-train by controlling the electric motor attached to the planetary gear system. However, no CGST has been realized in an actual vehicle thus far, and the performance has been predicted only theoretically. In this research, we analyzed the achievable performance based on a developed CGST dynamic model with a typical CGST structure. In addition, a CGST gear-shifting algorithm is proposed for use with the dynamic model. From the simulation results, the CGST does not show an abrupt drop in its torque or oscillation while shifting gears due to the absence of a discontinuous power flow. The developed dynamic model can serve as a performance reference for the CGST. Moreover, it can be used as a simulation tool for developing a gear-shifting control logic scheme.  相似文献   
234.
Under real-life driving conditions, hilly roads are prevalent. Hilly road profile substantially influences fuel economy (FE) due to large impacts (increase or decrease) on power demand profile. Thus, the utilization of future altitude profile information has large potential to improve FE. In this paper, for optimal energy management of fuel cell hybrid electric vehicles (FCHEV), we investigate how much FE could potentially be improved when future altitude profile information is available. In particular, the simulation results are analyzed to justify the reason for this potential improvement and to identify which characteristics of hilly roads leads to large FE improvements. First of all, four statistical parameters are defined to characterize hilly roads: mean value, standard deviation (STD), distance interval (DI), and total distance. Then, several types of virtual hilly roads are generated based on various parameter combinations. In order to evaluate the potential FE improvement two energy management strategies (EMSs) are utilized: the first is Dynamic Programming, which evaluates the globally optimal FE when future hilly road information is available; the other is the Equivalent Consumption Minimization Strategy (ECMS) with adaptive equivalent factor for charge-sustenance, which represents the baseline EMS when future hilly road information is not available. The results show that downhill roads have much larger potential than uphill roads do for FE improvements when the future altitude profile is properly used for EMS. Furthermore, if the battery capacity is not large enough to handle the difference in potential energy, future hilly road information is more important to prevent violations of the maximum state-of-charge bound.  相似文献   
235.
This paper suggests a fatigue life calculation method (A fatigue life calculation method is suggested) for rubber components based on the dynamic crack growth considering shear effect. Dynamic tearing tests were carried out, and the crack length was measured using an optical microscope to calculate the dynamic crack growth rate which characterizes and determines the fatigue life. The algorithm was numerically implemented in finite element code, ABAQUS standard, by using the user subroutine and applied to several rubber components. In the finite element analysis, deformation mode of an element was classified into tension and shear, and a weighting factor was multiplied to a strain energy density according to the degree of shear strain. Tension and compression of an elliptic dumbbell specimen was simulated in order to verify the material parameters of the suggested fatigue life prediction equation and to enhance the reliability of the algorithm. Finally, the fatigue life of a vehicle suspension bushing was calculated and compared with test. There were good agreements in the failure location and the magnitude of the fatigue life.  相似文献   
236.
In this paper, we propose a design approach to a functional safety-compliant ECU for an electro-mechanical brake (EMB) control system or an electronic wedge brake (EWB) control system. Brake actuators in a brake-by-wire (BBW) system such as EMB or EWB are characterized by the safety-critical functions which are now executed by using many electric and electronic devices with application software. Based on hazard analysis and risk assessments of the automotive functional safety standard ISO 26262, the proposed EMB control system should be ASIL-D-compliant, which is the highest ASIL level. To this end, a hardware and a software design method is introduced to implement functionl safety-oriented monitoring functions which are based on an asymmetric dual-core architecture with an external watchdog processor. It is shown by using EMB hardware-In-the-Loop-Simulation (HILS) that the proposed ECU design approach is very effective when a hardware fault or software execution faults occur in the EMB ECU, moreover, this functional safety-compliant design can be well combiled with the sensor fault-tolerant control logic.  相似文献   
237.
The development of self-driving cars or autonomous vehicles has progressed at an unanticipated pace. Ironically, the driver or the driver-vehicle interaction is a largely neglected factor in the development of enabling technologies for autonomous vehicles. Therefore, this paper discusses the advantages and challenges faced by aging drivers with reference to in-vehicle technology for self-driving cars, on the basis of findings of recent studies. We summarize age-related characteristics of sensory, motor, and cognitive functions on the basis of extensive age-related research, which can provide a familiar to better aging drivers. Furthermore, we discuss some key aspects that need to be considered, such as familar to learnability, acceptance, and net effectiveness of new in-vehicle technology, as addressed in relevant studies. In addition, we present research-based examples on aging drivers and advanced technology, including a holistic approach that is being developed by MIT AgeLab, advanced navigation systems, and health monitoring systems. This paper anticipates many questions that may arise owing to the interaction of autonomous technologies with an older driver population. We expect the results of our study to be a foundation for further developments toward the consideration of needs of aging drivers while designing self-driving vehicles.  相似文献   
238.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   
239.
Engineering bus design requires testing of bus structures prototypes in order to guarantee a certain level of strength and an appropriate static and dynamic behavior of the bus superstructure when exposed to road loads. However, experimental testing of real bus structures is very expensive as it requires expensive resources and space. If testing is done on a scale bus model the previous required expenses are considerably reduced. Therefore, a novel methodology based on dimensional analysis applied to bus structure prediction to evaluate the bus structure static and dynamic performance is proposed. The static performance is evaluated attending to torsion stiffness and the dynamic in terms of the natural vibration frequencies and rollover threshold. A scale bus has been manufactured and dimensionless parameters have been defined in order to project the results obtained in the scale bus model to a larger model. Validation of the proposed methodology has been carried out under experimental and finite element analysis.  相似文献   
240.
This research work presents fatigue life evaluation techniques for an automotive vehicle aluminum front subframe using virtual test simulation technology with nonlinear suspension components model. The technology was used for improving the accuracy of the polynomial model used in conventional analysis. The proposed nonlinear suspension components models were developed using direct approach. The effects of the nonlinear elements on the prediction of the fatigue life were also analyzed. Actual aluminum front subframe was tested using half-car road test simulator to verify the accuracy of the models. It was found that the proposed nonlinear models yield more accurate results than conventional polynomial models. The proposed virtual test simulation technology with nonlinear suspension components model can be used to predict fatigue life for vehicle chassis structures more accurately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号