首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2946篇
  免费   19篇
公路运输   958篇
综合类   104篇
水路运输   936篇
铁路运输   89篇
综合运输   878篇
  2023年   14篇
  2022年   53篇
  2021年   27篇
  2020年   22篇
  2019年   28篇
  2018年   86篇
  2017年   81篇
  2016年   122篇
  2015年   37篇
  2014年   108篇
  2013年   453篇
  2012年   154篇
  2011年   161篇
  2010年   136篇
  2009年   154篇
  2008年   140篇
  2007年   91篇
  2006年   64篇
  2005年   61篇
  2004年   46篇
  2003年   45篇
  2002年   44篇
  2001年   41篇
  2000年   52篇
  1999年   35篇
  1998年   45篇
  1997年   49篇
  1996年   49篇
  1995年   71篇
  1994年   26篇
  1993年   35篇
  1992年   29篇
  1991年   24篇
  1990年   18篇
  1989年   14篇
  1988年   20篇
  1987年   21篇
  1986年   16篇
  1985年   25篇
  1984年   25篇
  1983年   18篇
  1982年   25篇
  1981年   32篇
  1980年   28篇
  1979年   40篇
  1978年   21篇
  1977年   21篇
  1976年   11篇
  1975年   18篇
  1974年   15篇
排序方式: 共有2965条查询结果,搜索用时 625 毫秒
641.
The use of dynamic driving simulators is constantly increasing in the automotive community, with applications ranging from vehicle development to rehab and driver training. The effectiveness of such devices is related to their capabilities of well reproducing the driving sensations, hence it is crucial that the motion control strategies generate both realistic and feasible inputs to the platform. Such strategies are called motion cueing algorithms (MCAs). In recent years several MCAs based on model predictive control (MPC) techniques have been proposed. The main drawback associated with the use of MPC is its computational burden, that may limit their application to high performance dynamic simulators. In the paper, a fast, real-time implementation of an MPC-based MCA for 9 DOF, high performance platform is proposed. Effectiveness of the approach in managing the available working area is illustrated by presenting experimental results from an implementation on a real device with a 200?Hz control frequency.  相似文献   
642.
Automated and manual transmissions are the main link between engine and powertrain. The technical term when the transmission provides the desired torque during all possible driving conditions is denoted as powertrain matching. Recent developments in the last years show that double-clutch-transmissions (DCTs) are a reasonable compromise in terms of production costs, shifting quality, drivability and fuel efficiency. They have several advantages compared to other automatic transmissions (AT). Most DCTs nowadays consist of a hydraulic actuation control unit, which controls the clutches of the gearbox in order to induce a desired drivetrain torque into the driveline. The main functions of hydraulic systems are manifold: they initiate gear shifts, they provide sufficient oil for lubrication and they control the shift quality by suitably providing a desired oil flow or pressure for the clutch actuation. In this paper, a mathematical model of a passenger car equipped with a DCT is presented. The objective of this contribution is to get an increased understanding for the dynamics of the hydraulic circuit and its coupling to the vehicle drivetrain. The simulation model consists of a hydraulic and a mechanical domain: the hydraulic actuation circuit is described by nonlinear differential equations and includes the dynamics of the line pressure and the proportional valve, as well as the influence of the pressure reducing valve, pipe resistances and accumulator dynamics. The drivetrain with its gear ratios, moments of inertia, torsional stiffness of the rotating shafts and a simple longitudinal vehicle model represent the mechanical domain. The link between hydraulic and mechanical domain is given by the clutch, which combines hydraulic equations and Newton's laws. The presented mathematical model may not only be used as a simulation model for developing the transmission control software, it may also serve as a virtual layout for the design process phase. At the end of this contribution a parametric study shows the influence of the mechanical components, the accumulator and the temperature of the oil.  相似文献   
643.
This paper mainly focuses on the accurate estimation of the torque transferred through the engine clutch installed between the engine and the drive motor in parallel-type hybrid electric vehicles. The estimation of the engine clutch torque primarily relies on the forward-direction observer which uses the nominal engine net torque information. To overcome the limitation of using the nominal engine torque information that it may not be accurate during the transient states or due to the influence of external disturbance such as the road condition and wind, the forward-direction observer is supplemented by the use of reverse-direction observer which uses the driveline model and wheel speed measurements. In addition, the drive motor torque information is used to calibrate the nominal engine torque during the idle charging state, so that the driveline characteristic unique to parallel-type hybrid electric vehicle can be utilized to increase the estimation accuracy. Finally, the estimation performance of the designed observer is tested via simulation and experiments based on a real vehicle.  相似文献   
644.
This paper focuses on the way of keeping shift quality of automatic transmissions consistent in mass production and with mileage accumulation. We investigate the main factors influencing the consistency of shift quality. Test results show that the torque to pressure (T2P) and pressure to current (P2I) characteristics of shifting elements are easily affected. A simulation model of an 8-speed automatic transmission is established to simulate the dynamic process of clutch-to-clutch shift. Simulation results demonstrate that the change of T2P and P2I characteristics has a significant influence on shift quality. In order to compensate for the influences, we develop two adaptive control strategies, i.e., the adaptive control strategies for torque phase and inertia phase. They make use of the measured speed information and time information to evaluate shift quality. Then the control parameters are tuned to adapt to the change of T2P and P2I characteristics. Vehicle tests verify that the developed adaptive control strategies are effective to keep shift quality consistent in mass production and with mileage accumulation.  相似文献   
645.
In this paper, a novel spacing control law is developed for vehicles with adaptive cruise control (ACC) systems to perform spacing control mode. Rather than establishing a steady-state following distance behind a newly encountered vehicle to avoid collision, the proposed spacing control law based on model predictive control (MPC) further considers fuel economy and ride comfort. Firstly, a hierarchical control architecture is utilized in which a lower controller compensates for nonlinear longitudinal vehicle dynamics and enables to track the desired acceleration. The upper controller based on the proposed spacing control law is designed to compute the desired acceleration to maintain the control objectives. Moreover, the control objectives are then formulated into the model predictive control problem using acceleration and jerk limits as constrains. Furthermore, due to the complex driving conditions during in the transitional state, the traditional model predictive control algorithm with constant weight matrix cannot meet the requirement of improvement in the fuel economy and ride comfort. Therefore, a real-time weight tuning strategy is proposed to solve time-varying multi-objective control problems, where the weight of each objective can be adjusted with respect to different operating conditions. In addition, simulation results demonstrate that the ACC system with the proposed real-time weighted MPC (RW-MPC) can provide better performance than that using constant weight MPC (CW-MPC) in terms of fuel economy and ride comfort.  相似文献   
646.
Idle vibration, occurring when a vehicle comes to a stop while the engine is on, is known to be a main cause of discomfort for passengers, and the customer effect has been recently growing. The frequency of idle vibration is determined by the engine type. To lower the vibration, various technologies have been applied to optimize the engine mount and vehicle body structure. In addition to the technological developments, research on human response with a consideration of idle vibration is needed to effectively reduce the level of discomfort experienced by passengers. Seats aimed at enhancing static comfort influence the sitting posture of passengers; sitting posture is a factor affecting human body characteristics that response to idle vibration. This study examined the absolute discomfort threshold of idle vibration according to the sitting postures of 13 taxi drivers. The four sitting postures of subjects on a rigid-body seat without a backrest were variables in the determination of absolute discomfort threshold of idle vibration. The absolute discomfort threshold curves obtained in this experiment were less sensitive to frequency changes than the frequency weighting function of ISO 2631-1.  相似文献   
647.
Lane-changing events are often related with safety concern and traffic operational efficiency due to complex interactions with neighboring vehicles. In particular, lane changes in stop-and-go traffic conditions are of keen interest because these events lead to higher risk of crash occurrence caused by more frequent and abrupt vehicle acceleration and deceleration. From these perspectives, in-depth understanding of lane changes would be of keen interest in developing in-vehicle driving assistance systems. The purpose of this study is to analyze vehicle interactions using vehicle trajectories and to identify factors affecting lane changes with stop-and-go traffic conditions. This study used vehicle trajectory data obtained from a segment of the US-101 freeway in Southern California, as a part of the Next Generation Simulation (NGSIM) project. Vehicle trajectories were divided into two groups; with stop-and-go and without stop-and-go traffic conditions. Binary logistic regression (BLR), a well-known technique for dealing with the binary choice condition, was adopted to establish lane-changing decision models. Regarding lane changes without stop-and-go traffic conditions, it was identified based on the odd ratio investigation that he subject vehicle driver is more likely to pay attention to the movement of vehicles ahead, regardless of vehicle positions such as current and target lanes. On the other hand, the subject vehicle driver in stop-and-go traffic conditions is more likely to be affected by vehicles traveling on the target lane when deciding lane changes. The two BLR models are adequate for lane-changing decisions in normal and stop-and-go traffic conditions with about 80 % accuracy. A possible reason for this finding is that the subject vehicle driver has a tendency to pay greater attention to avoiding sideswipe or rear-end collision with vehicles on the target lane. These findings are expected to be used for better understanding of driver’s lane changing behavior associated with congested stop-and-go traffic conditions, and give valuable insights in developing algorithms to process sensor data in designing safer lateral maneuvering assistance systems, which include, for example, blind spot detection systems (BSDS) and lane keeping assistance systems (LKAS).  相似文献   
648.
The measurement of accessibility: Some preliminary results   总被引:4,自引:0,他引:4  
This paper presents an analysis of accessibility by private transport, using a Hansen type measure of accessibility. The data base is the 1962 London Travel Survey. The study is confined to car-owning households residing in inner London. A comparison of the patterns of accessibility associated with four measures of areal attractiveness - total employment, retail employment, households and population - is presented. The sensitivity of relative accessibilities to marginal changes in parameter values is analysed. Two aspects of the effect of the zoning system on the measurement of accessibility are investigated: the effects of zonal configuration and zonal aggregation. First, the implications of increasing the size of central area zones is analysed. Second, a comparison of patterns of accessibility calculated at the zonal and district levels is undertaken.[/p]  相似文献   
649.
This paper examines the spatial patterns of population density, household automobile ownership and other socio-demographic variables that affect urban travel, as a function of distance from the central city core. Spatial density functions provide a useful characterization of urban structure, and of its evolution when taken at different time intervals. Analysis of the data from four case cities (Austin, Atlanta, Dallas, Phoenix) for 1960, 1970 and 1980 reveals continuing overall dispersion away from the traditional central core, accompanied by the densification of formerly low-density suburbs. This presents implications for high congestion levels in the densifying suburban communities, comparable to those typically associated with the CBD. In addition, the analysis has captured the continuing growth of average household automobile ownership and revealed a distinct spatial pattern that seems to be robust across the case areas considered, as well as within radial corridors in the one case that was so analyzed (Austin).List of symbols Y gross population density in census tractt - X t distance in miles from the center of tract to the CBD - parameter representing the central business district density - y density gradient parameter - X0, X1, X2, and X3 locations of the knots in a three segment division of the x-axis - Di dummy variable defined for thei-th segment - 1 normally distributed disturbance term,a i,b i,c i,d i,i = 1, 2, 3 — parameters to be estimated - A t area of census tractt  相似文献   
650.
Research purposes: Low vibration track is a suitable track structure in the heavy haul railway long tunnel. Taking the low vibration track in the middle-south channel tunnel as the research object, through the full-scale model static load test, this paper studies the mechanical properties of a single bearing block under the vertical load at the end of the track bed slab (working condition 1), the horizontal and vertical load at the end of the track bed slab (working condition 2), the vertical load at the middle of the track bed slab (working condition 3) and track's crack development trend. Research conclusions:(1) Taking the static load of 30 t axle load train as a reference, the track slab and bearing block concrete of working condition 1 reach the axial tensile strength at 3.3 and 3.1 times static wheel load, the track slab and bearing block concrete of working condition 2 reach the axial tensile strength at 3.0 and 3.1 times static wheel load, the track slab and bearing block concrete of working condition 3 reach the axial tensile strength at 4.9 and 2.9 times static wheel load. (2) Track slab's crack of working condition 1 appears at the corner of the bearing block and the midline of the long side of the bearing block and extends to the short side of the track slab. The crack extension at the corner point is in the shape of "eight". There is no obvious crack of working condition 3 in the track slab. (3) The horizontal load of the train leads to the increase of the force of the concrete in the corner of the bearing block. (4)The research results have guiding significance for the design, construction and maintenance of low vibration track. © 2018, Editorial Department of Journal of Railway Engineering Society. All right reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号