首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   13篇
公路运输   327篇
综合类   16篇
水路运输   151篇
铁路运输   31篇
综合运输   145篇
  2024年   3篇
  2023年   19篇
  2022年   47篇
  2021年   9篇
  2020年   7篇
  2019年   3篇
  2018年   63篇
  2017年   12篇
  2016年   40篇
  2015年   11篇
  2014年   59篇
  2013年   50篇
  2012年   42篇
  2011年   45篇
  2010年   54篇
  2009年   45篇
  2008年   41篇
  2007年   21篇
  2006年   12篇
  2005年   12篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有670条查询结果,搜索用时 328 毫秒
621.
It is important to consider the robustness when designing brake control systems, because of the model's uncertainties that result from the nonlinear characteristics of wheel-to-rail adhesion forces and brake material friction coefficients. This paper presents the experimental results from the new wheel-slip prevention control using nonlinear robust control theory. The authors performed experiments for the proposed wheel-slip prevention control to compare it with the conventional control laws. The experimental results proved the comparative effectiveness of the proposed control and showed high brake performance under nonlinear characteristics of brake dynamics.  相似文献   
622.
Abstract

This paper attempts to propose a framework on driving cycle development based on a thorough review of 101 transient driving cycles. A comparison of the driving cycles highlighted that Asian driving is the slowest but most aggressive while European driving is the fastest and smoothest. Further review of the cycle development methodologies identified three major elements for developing a driving cycle; test route selection, data collection and cycle construction methods. A framework was eventually proposed based on these findings and recommendations from this review. First, traffic activity patterns and quantitative statistics should be considered in determining the test routes. Speed data can be collected by using chase car method, on‐board measurement techniques or their hybrid. As for the construction of driving cycle, the matching approach has been more commonly used. It is recommended that the tendency of zero change in acceleration, which has been commonly ignored in the literature, and the application of succession probability at second‐by‐second level should be further explored. A fifth mode, creeping, is also recommended for modal analysis for characterizing urban congested driving conditions.  相似文献   
623.
This paper discusses the necessity of using a transmission system to improve the energy efficiency of purely electric vehicles (EVs). The energy efficiency of an electric motor varies at different operating points to meet the output power demand. The three gear ratios of a transmission system can maintain the motor speed within a stable region with relatively high energy efficiency, while various vehicle speeds are needed. This work is based on a light EV prototype. The optimized gear ratios of this transmission result in a considerably reduced energy consumption of 9.3% compared with conventional EVs with single-speed reducers under the condition of the Urban Dynamometer Driving Schedule driving cycle. Thus, the transmission system is necessary to improve the energy efficiency of EVs.  相似文献   
624.
Due to environmental concerns and safety regulations in the automotive industry, the development of strong and lightweight cars has been a hot issue in the last decade. One solution for this purpose would be to use high-strength steel (HSS) and advanced high-strength steel (AHSS). These materials can make the car lighter while maintaining the crash resistance of the vehicle. HSS and AHSS have more resistance force in the die structure compared with conventional steel due to their higher yield and tensile strength and thus, these materials have a greater effect on die deformation during the sheet metal forming process. As a result, die deformation can affect the blank sheet’s drawn pattern, strain, and stress as well as springback. This study presents a sheet metal forming simulation that considers die deformation. The simulation process was compared with conventional simulation methods. Our results indicate that the sheet metal forming simulation with die deformation consideration provides useful information on the die structure as well as formability and springback.  相似文献   
625.
In this study, 2 different valve-angle engines, one is wide and the other is narrow, were prepared for investigating the effects of the angle on the combustion. For this purpose, the part load performances were evaluated and the pressures were measured for combustion analysis at an engine bench under 5 different operating conditions, varying the compression ratio. The results show that the combustion proceeds so faster in the small IVA engine that its MBT timings are retarded considerably compared with that of large one and result in lower NOx emission level; however, unburned HC is higher because of its geometrical feature. In addition, there is no substantial difference between 2 IVA engines in the timings of combustion initiation and completion as a crank-angle-position-base in spite of the considerable difference of spark timing, on the other hands, the ignition delay of the small IVA is shorter than that of large one. Also the phenomena that the flame propagation is faster and the instant heat release rate is more concentrated and higher in the small were observed. Also, the burn duration of small one is shorter and the combustion process is more accelerated up to the mid-combustion stage; however, the process of large one is faster as the combustion approaches the last stage and the differences of combustion duration reduce as the compression ratio increases. Finally, the engine runs more stable when the IVA is small without any exception because of its rapid burn at the initial combustion stage.  相似文献   
626.
627.
Abstract

In large metropolitan areas, public transit is a major mode choice of commuters for their daily travel, which has an important role in relieving congestion on transportation corridors. The purpose of this study is to develop a model which optimizes service patterns (SPs) and frequencies that yield minimum cost transit operation. Considering a general transit route with given stops and origin-destination demand, the proposed model consists of an objective total cost function and a set of constraints to ensure frequency conservation and sufficient capacity subject to operable fleet size. A numerical example is provided to demonstrate the effectiveness of the developed model, in which the demand and facility data of a rail transit route were given. Results show that the proposed model can be applied to optimize integrated SPs and headways that significantly reduce the total cost, while the resulting performance indicators are generated.  相似文献   
628.
The demand for continually improving the transient performance of diesel engines requires higher rail pressure and more efficient turbocharger. Before the test, a two-stage turbocharger with a turbine by-pass valve (TBV) had been matched reasonably with the base engine. In order to reduce smoke emission under the typical 5-second transient process of constant speed and increasing torque, the influence of rail pressure on combustion, emissions and performance characteristics was experimentally investigated. The results showed that the two-stage turbocharger was helpful in improving transient performance. Moreover, the full-stage rail pressure (FSRP) strategies (increasing rail pressure during the whole transient process) could reduce smoke emission when the TBV was closed. However, smoke deteriorated once TBV opening got larger. Then the sectional-stage rail pressure (SSRP) strategies (increasing rail pressure from a pre-set load to 100 % load) were presented under small TBV opening to improve in-cylinder thermal condition. Hence, the air-fuel mixing process was improved at medium and large loads. Then the maximum decline of smoke opacity peak was 56.3 %, which happened under 10 % TBV opening. In addition, fuel consumption of FSRP strategies got worse under larger TBV opening. However, this deterioration situation could be effectively restrained by the utilization of SSRP strategies.  相似文献   
629.
There is an increasing interest in supercharging spark ignition engines operating on CNG (compressed natural gas) mainly due to its superior knock resisting properties. However, there is a penalty in volumetric efficiency when directly injecting the gaseous fuel at early and partial injection timings. The present work reports the combined effects of a small boost pressure and injection timing on performance and combustion of CNG fueled DI (direct injection) engine. The experimental tests were carried out on a 4-stroke DI spark ignition engine with a compression ratio of 14. Early injection timing, when inlet valves are still open (at 300°BTDC), and partial injection timing, in which part of the injection occurs after the inlet valves are closed (at 180°BTDC), were varied at each operating speed with variation of the boost pressure from 2.5 to 10 kPa. A narrow angle injector (NAI) was used to increase the mixing rate at engine speeds between 2000 and 5000 rpm. Similar experiments were conducted on a naturally aspirated engine and the results were then compared with that of the boosting system to examine the combined effects of boost pressure and injection timing. It was observed that boost pressure above 7.5 kPa resulted in an improvement of performance and combustion of CNG DI engine at all operating speeds. This was manifested in the faster heat release rates and mass fraction burned that in turn improved combustion efficiency of the boosting system. An increased in cylinder pressure and temperature was also observed with boost pressure compared to naturally aspirated engine. Moreover, the combustion duration was reduced due to concentration of the heat release near to the top dead center as the result of the boost pressure. Supercharging was also found to reduce the penalty of volumetric efficiency at both the simulated port and partial injection timings.  相似文献   
630.
Since 2012, the Korean and EU governments have been running a tyre labelling system. All tyres sold in Korea have to carry a label that displays information of two performance criteria: rolling resistance and wet grip. The rolling resistance of the tyres determines their fuel efficiency grading, and the wet grip of the tyres determines their braking safety grading. The rolling resistance and wet grip measurements must be reproducible, so the same tests on the same tyres in different laboratories must produce the same results to ensure a fair comparison between tyres from different suppliers. In addition, a good reproducibility of testing results prevents market surveillance authorities from obtaining results different from those provided by suppliers when testing the same tyres. The laboratory alignment procedure for the rolling resistance measurements was developed and published as the EU Commission Regulation No. 1235 in 2011. However, the laboratory alignment procedure for the wet grip measurements has not yet been developed. Therefore, there are many differences in the wet grip test results among test laboratories throughout the world. The new procedure that is proposed for the wet grip measurement alignment for tyre testing laboratories can improve the reproducibility of the wet grip testing results, and five laboratory alignment tests were carried out between KATECH and five other test laboratories in the world to evaluate the results of the proposed procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号