全文获取类型
收费全文 | 1386篇 |
免费 | 20篇 |
专业分类
公路运输 | 544篇 |
综合类 | 49篇 |
水路运输 | 357篇 |
铁路运输 | 46篇 |
综合运输 | 410篇 |
出版年
2023年 | 14篇 |
2022年 | 37篇 |
2021年 | 15篇 |
2020年 | 9篇 |
2019年 | 14篇 |
2018年 | 29篇 |
2017年 | 36篇 |
2016年 | 67篇 |
2015年 | 20篇 |
2014年 | 76篇 |
2013年 | 185篇 |
2012年 | 86篇 |
2011年 | 81篇 |
2010年 | 74篇 |
2009年 | 83篇 |
2008年 | 62篇 |
2007年 | 24篇 |
2006年 | 28篇 |
2005年 | 32篇 |
2004年 | 22篇 |
2003年 | 28篇 |
2002年 | 28篇 |
2001年 | 21篇 |
2000年 | 24篇 |
1999年 | 21篇 |
1998年 | 14篇 |
1997年 | 20篇 |
1996年 | 18篇 |
1995年 | 24篇 |
1994年 | 12篇 |
1993年 | 17篇 |
1992年 | 7篇 |
1991年 | 9篇 |
1989年 | 8篇 |
1988年 | 5篇 |
1987年 | 7篇 |
1986年 | 10篇 |
1985年 | 10篇 |
1984年 | 9篇 |
1983年 | 17篇 |
1982年 | 10篇 |
1981年 | 12篇 |
1980年 | 9篇 |
1979年 | 12篇 |
1977年 | 11篇 |
1976年 | 11篇 |
1975年 | 19篇 |
1974年 | 5篇 |
1973年 | 5篇 |
1972年 | 4篇 |
排序方式: 共有1406条查询结果,搜索用时 15 毫秒
51.
Node-based scheduling method for easy migration from CAN to FlexRay in in-vehicle networking systems
As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) are essential for the convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on chassis networking systems that require increased network capacity and real-time capabilities. FlexRay was developed to replace CAN protocol in chassis networking systems, to remedy the shortage of transmission capacity and unsatisfactory real-time transmission delay of conventional CAN. However, FlexRay network systems require a complex scheduling method, which is a barrier to their implementation as chassis networking systems. In particular, if we want to migrate from a CAN network to a FlexRay network using the well-defined CAN message database, which has been specifically constructed for chassis networking systems by automotive vendors, a new type of scheduling method is necessary to reduce scheduling efforts during the software development process. This paper presents a node-based scheduling method for easy migration from a CAN network to a FlexRay network system. To demonstrate the feasibility of the technique, its performance is evaluated in terms of various software complexity indices. 相似文献
52.
53.
This research attempted to analyze nanoparticles and other harmful exhaust emissions in accordance with injection strategies and air-fuel ratio (AFR) changes for small diesel engines. The emission characteristics were analyzed in the medium-speed condition, which is the main driving range of a diesel engine. In the case of particulate matter (PM), the number of particles was measured, analyzed, and compared to identify the correlation and emission characteristics of nanoparticles by using a dilution device and condensation particle counter (CPC), which are international standards for particle measurement recommended by the Particulate Measurement Programme (PMP). The engine torque tended to be reduced as pilot injections were added, and the torque was increased by the increased boost pressure, but reduced by the exhaust pressure increase in a part of the low-load range. The number of nanoparticles was not influenced greatly by the change in AFR, but the reduction effect on the PM weight was great depending on the boost pressure increase. In addition, the number of nanoparticles tended to increase as the fuel injection timing became closer to TDC in all conditions, and its difference became larger with an increase in AFR. In addition, in the case of the pilot injection, nanoparticle emission showed similar characteristics depending on the main injection timing, but it was increased by advanced injection timing when performing the main injection only, and the number of the nanoparticles increased as pilot injections were added. Last, the optimal conditions for EMS calibration were analyzed by selecting the conditions of torque reduction and NOx increase within 5 % from all of the engine operating conditions; optimized conditions are presented. 相似文献
54.
C. H. Lee 《International Journal of Automotive Technology》2017,18(2):317-325
CFD simulations of spray tip penetration with the standard KIVA3V, ‘original gas jet’ and ‘Normal gas jet profile with breakup length formula’ (NGJBL) spray models were performed to investigate the effects of nozzle orifice size and ambient gas density combinations on the spray penetration. The accuracy of the CFD simulation results was estimated by comparing them with available experimental data. The ambient gas density was varied in 12 kg/m3 intervals from 12 to 69 kg/m3 for each nozzle orifice diameter. The nozzle orifice diameters used were 119, 140, 183 and 206 mm. A total of 20 cases in the CFD simulations were considered with combinations of the 4 nozzle orifice diameters and 5 ambient gas densities. CFD simulations with the NGJBL spray model were more accurate than those with either the standard KIVA3V or gas jet spray models as the nozzle orifice diameter and ambient gas density was increased. The NGJBL and original gas jet model is more effective in predicting the spray tip penetration near the nozzle tip region. 相似文献
55.
N. Docquier P. Fisette H. Jeanmart 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2007,45(6):505-524
This article presents a multidisciplinary approach of railway pneumatic suspension modelling: both multibody and pneumatic aspects are taken into account. The work aims at obtaining a realistic model of the secondary suspension and coupling it with a multibody model of a train. Various components of the pneumatic circuit such as bellows, tanks, pipes and valves are taken into account. The article focuses on the bellow-pipe-tank subsystem for which several modelling approaches are presented and compared. Differences between differential and algebraic models are highlighted, and an application-dependent choice between them is suggested. A complete model of the pneumatic circuit is then obtained and coupled with a multibody model of the train. As a result, the behaviour of a suburban train equipped with a pneumatic secondary suspension is analysed, in particular undesired oscillating motions which affect the comfort. Topological modifications and improvements of the suspension are also investigated and discussed. 相似文献
56.
This paper establishes the simulation model of a city bus on the basis of the EQ6110 bus prototype and its experimental data.
According to the actual urban driving cycle, the fuel economy and the traction performance of the EQ6110 city bus have been
simulated, and factors such as the driving cycle, the loss of power to engine accessories, the gear-shifting strategy, the
fuel shut-off strategy of the engine, etc., which influence on the bus’s fuel economy, are also quantitatively analyzed. Some
conclusions are drawn as follows: (1) driving cycles have a great influence on the fuel economy of a city bus; (2) under the
typical urban driving cycle of the public bus in China, the engine fuel shut-off strategy can save about 1 to 1.5 percent
of the fuel consumption; and (3) the optimized gear-shifting rules can save 6.7 percent of the fuel consumption. Experimental
results verify that the fuel economy for the EQ6110 public bus is improved by 7.2 pecent over the actual Wuhan urban driving
cycle of the current public bus in China. 相似文献
57.
Prediction of fatigue life and estimation of its reliability on the parts of an air suspension system 总被引:1,自引:0,他引:1
K. J. Jun T. W. Park S. H. Lee S. P. Jung J. W. Yoon 《International Journal of Automotive Technology》2008,9(6):741-747
Air suspension systems have been implemented in various commercial vehicles, such as buses and special purpose trucks, because
of the comfortable ride and easy height control. An evaluation of the durability of vehicle parts has been required for service
life and safety starting in the early stages of design. The cyclic load applied to the vehicle can cause fatigue failure of
parts, such as the suspension frame. This paper presents a method to predict the fatigue life of the suspension frame at the
design stage of the air suspension system used in a heavy-duty vehicle. To estimate the fatigue life using the SN method,
the Dynamic Stress Time History (DSTH) is necessary for the part of interest. DSTH can be obtained from the results of the
flexible body dynamic analysis using the Belgian road simulation and the Modal Stress Recovery (MSR) method. Furthermore,
the reliability of the predicted fatigue life can be evaluated by considering the variations in material properties. The probability
and distribution of the expected life cycle can be obtained using experimental design with a minimum number of simulations.
The advantage of using statistical methods to evaluate the life cycle is the ability to predict replacement time and the probability
of failure of mass-produced parts. This paper proposes a rapid and simple method that can be effectively applied to the design
of vehicle parts. 相似文献
58.
H. S. Seo B. C. Kim P. S. Park C. D. Lee S. S. Lee 《International Journal of Automotive Technology》2013,14(1):91-99
In this paper, we propose a universal plug and play (UPnP) — controller area network (CAN) gateway system using UPnP middleware for interoperability between external smart devices and an in-vehicle network. The proposed gateway consists of a UPnP communication device, a CAN communication device, and a device translator layer. In-vehicle devices are not usually IP-based, so we implemented an in-vehicle device manager in the UPnP communication device which is in the gateway. We developed a vehicle simulator to produce real vehicular data for performance analysis. The CAN communication device transmits and receives real-time vehicle data between the real vehicular simulator and external devices through the UPnP. The device translator layer configures a message frame for enabling seamless data input and output between the CAN and UPnP protocols. After implementation, we generated an internal-external service request and tested the result. Finally, we confirmed the service request and operation between external devices and the internal vehicular device. Additionally, for a variety of external device numbers and communication environments, we demonstrated the gateway performance by measuring the round trip time (RTT) for overall service implementation. 相似文献
59.
S. Y. Hwang H. S. Jeong N. Kim J. Domblesky 《International Journal of Automotive Technology》2016,17(1):127-133
The appearance and exterior precision of passenger cars aesthetics has become an important factor in the automotive industry. During vehicle assembly, the curvature of the roof can change slightly and create cosmetic defects that affect the exterior appearance. The critical factor causing curvature change on the roof is the thermally driven expansion of an elastomer-based mastic sealer which is applied between the exterior roof panel and support rail during the frame assembly process. Therefore the expansion of the mastic sealer was modeled to predict the curvature change in the roof panel. In order to evaluate the causes and predict the curvature change quantitatively, a Finite Element (FE) simulation of the oven heating and mastic curing was performed. Validation of the simulation model was performed by comparing the local deformation and amount of the curvature change on the roof obtained from the actual process. In order to minimize the curvature change, the Taguchi method was used in conjunction with the FE model where a total of eight factors were chosen to perform a sensitivity analysis. In order to exclude the deformation due to residual stress resulting from the oven process, it was selected as a noise factor. Response was taken as the maximum curvature change calculated by a flexural function which was used to distinguish absolute curvature that is not affected by the horizontal or vertical movement of roof panel. A total of 18 cases were analyzed with length of each sealer, pitch of sealer, and rail location being identified as the most influential factors affecting the curvature change. Using the optimum values, the amount of curvature change in the roof panel was reduced by 12 percent. 相似文献
60.
Multi-axle vehicle dynamics stability control algorithm with all independent drive wheel 总被引:1,自引:0,他引:1
Y.?H.?ShenEmail author Y.?Gao T.?Xu 《International Journal of Automotive Technology》2016,17(5):795-805
The stability driving characteristic and the tire wear of 8-axle vehicle with 16-independent driving wheels are discussed in this paper. The lateral stability of 8-axle vehicle can be improved by the direct yaw moment which is generated by the 16 independent driving wheels. The hierarchical controller is designed to determine the required yaw torque and driving force of each wheel. The upper level controller uses feed-forward and feed-backward control theory to obtain the required yaw torque. The fuzzification weight ratio of two control objective is built in the upper level controller to regulate the vehicle yaw and lateral motions. The rule-based yaw moment distribution strategy and the driving force adjustment based on the safety of vehicle are proposed in the lower level controller. The influence of rear steering angle is considered in the distribution of driving force of the wheel. Simulation results of a vehicle double lane change show the stability of 8-axle vehicle under the proposed control algorithm. The wear rate of tire is calculated by the interaction force between the tire and ground. The wear of tire is different from each other for the vehicle with the stability controller or not. 相似文献