排序方式: 共有1850条查询结果,搜索用时 0 毫秒
71.
The estimation of the overspeed risk before the accident is among the main goals of this paper. The proposed method uses the Energy Equivalent Speed (EES) to assess the severity of an eventual accident. However, the driver behavior evaluation should take into account the parameters related to the Driver, the Vehicle and the Environment (DVE) system. For this purpose, this paper considers a two-level strategy to predict the global risk of an event using the Dempster-Shafer Theory (DST) and the Fuzzy Theory (FT). This paper presents two methods to develop the Expert Model-based Basic Probability Assignment (EM based BPA), which is the most important task in the DST. The first one is based on the accident statistics and the second method deals with the relationship between the Fuzzy and Belief measurements. The experimental data is collected by one driver using our test vehicle and a Micro-intelligent Black Box (Micro-iBB) to collect the driving data. The sensitivity of the developed models is analysed. Our main evaluation concerns the Usage Based Insurance (UBI) applications based on the driving behavior. So, the obtained masses over the defined referential subsets in the DST are used as a score to compute the driver’s insurance premium. 相似文献
72.
73.
Hyung Seok Heo Suk Jung Bae Sung Mok Hong Seung Uk Park 《International Journal of Automotive Technology》2018,19(2):221-231
Although fuel cost has been the largest portion of annual operating costs of construction equipment, it is possible to save the energy and reduce cost using fuel economy enhancement technology. In this study, an organic Rankine cycle is applied to an excavator in order to recover waste heat, reproduce it into electrical energy, and consequently reduce the fuel consumption by 10 %. A design process was carried out to develop an exhaust gas superheater that recovers the waste heat from exhaust gas through a composite-dimensional thermal flow analysis. A one-dimensional code was developed to perform a size design for the exhaust gas superheater. The ranges for the major design parameters were determined to satisfy the target of the heat recovery, as well as the pressure drop at both fluid sides. Performance analysis was done through onedimensional design code results, which were compared with three-dimensional CFD analysis. By utilizing a 3D commercial code, the arrangement of the tubes was selected and the working fluid pressure drop was reduced through a detailed layout design. The design procedure was verified by a performance evaluation of the prototype, which yielded only a 7 % tolerance in heat recovery. 相似文献
74.
Xu Boyan Jiang Longlong Sun Chaodong Liu Yingchun 《International Journal of Automotive Technology》2018,19(2):313-321
The use of automotive LPG characteristics which are easy to evaporate vaporization and carry. The paper presents a design of extended-range electric vehicle for wall-guided two stroke LPG engine with direct injection combustion system. Based on the modified vehicle LPG spray model, a database describing the characteristics of vehicle LPG fuel was built and imported into the CFD software. And the accuracy of the model is verified by the Schlieren experimental results. The concentration and velocity field of the mixture in the cylinder under different load conditions are numerically analyzed. The analyzed result indicated that the start injection time θ = 60°–70°CA BTDC under part load condition, the plug electrode near the gathering of a richer mixture is easy to be fired at spark ignition time, the obvious formation of mixture in cylinder is formed and the overall air-fuel ratio is above 40: 1. The start-transition working condition and large load conditions in the piston moves upward before closing the exhaust port to start injection LPG. The optimized LPG injection start time θ ensures that the fresh gas is locked in the cylinder when the exhaust port is closed (63°CA ABDC). In the ignition time of the spark plug, an ideal homogeneous mixture in the cylinder is realized. 相似文献
75.
Prathan Srichai Pop-Paul Ewphun Chinda Charoenphonphanich Preechar Karin Manida Tongroon Nuwong Chollacoop 《International Journal of Automotive Technology》2018,19(3):535-545
This research attempts to characterize the injection of palm biodiesel blended with diesel in a Zuech’s chamber. Thailand conventional diesel (mandated blend of biodiesel at 5 % or B5), palm biodiesel (B100) and four other biodiesel blends ratios (B20, B40, B60 and B80) were investigated with single hole injector of 140 and 200 μm diameters, injection pressure of 40 MPa to 160 MPa, constant back pressure of 4.5 MPa and energize time of 2.5 ms. The results show that increasing biodiesel blending ratios leads to longer injection delay, larger injection pressure drop, smaller injection quantity discharge coefficient (Cd) and shorter injection duration. With increasing biodiesel blending ratio, high Cavitation number from biodiesel viscosity decreases Reynolds number. Increasing injector diameter from 140 μm to 200 μm has reduced injection delay, increased fuel injection quantity, discharge coefficient and remaining injection duration. The increasing of injection pressure were improve, injection delay, injection duration, injection quantity and discharge coefficient until injection pressure 120 MPa. In addition at injection pressure over 120 MPa are decrease injection quantity and discharge coefficient, it effect form the cavitation phenomena. Increasing of viscosity, density, Bulk modulus and sound velocity were effect to increase injection delay, with reduce injection quantity, injection duration and pressure drop during injection process. 相似文献
76.
Hansae Cho Sunghoon Yang Jonghyun Yim Seungki Kim Soo-Won Chae 《International Journal of Automotive Technology》2018,19(5):845-852
The passenger airbag (PAB) requires a large volume and fast deployment because of the large distance between the dashboard and the passenger. And various shapes and sizes of the PAB are required depending on the type of vehicle. However, since the PAB modeling process for each design change is complicated and time consuming, the design parameters of the PAB could not be well investigated. In this study, a unique feature-based CAD system has been proposed that easily constructs PAB CAD model and then generates PAB FE model for collision analysis. Main keypoints and widths of PAB that determine the shape and size have been extracted by analyzing the geometric-feature of airbag. The PAB CAD model can be easily constructed by inputting keypoints and widths information. Then, from the constructed PAB CAD model, the PAB FE model is automatically generated. Finally, the generated PAB FE model can be directly employed for collision analysis, thereby reducing the modeling time of the PAB and enabling efficient parametric studies on design. 相似文献
77.
This paper suggests a real-time method for detecting a driver’s cognitive and visual distraction using lateral driving performance measures. The algorithm adopts radial basis probabilistic neural networks (RBPNNs) to construct classification models. In this study, combinations of two driving performance data measures, including the standard deviation of lane position (SDLP) and steering wheel reversal rate (SRR), were considered as measures of distraction. Data for training and testing the RBPNN models were collected under simulated conditions in which fifteen participants drove on a highway. While driving, they were asked to complete auditory recall tasks or arrow search tasks to create cognitively or visually distracted driving periods. As a result, the best performing model could detect distraction with an average accuracy of 78.0 %, which is a relatively high accuracy in the human factors domain. The results demonstrated that the RBPNN model using SDLP and SRR could be an effective distraction detector with easy-to-obtain and inexpensive inputs. 相似文献
78.
Tae Joong Wang 《International Journal of Automotive Technology》2018,19(6):941-947
In this study, the effect of hydrothermal aging over a commercial diesel oxidation catalyst (DOC) on deterioration in nitrogen dioxide (NO2) production activity has been experimentally investigated based on a micro-reactor DOC experiment. Through this experimental result, the NO2 to nitrogen oxides (NOx) ratio at DOC outlet has been mathematically expressed as a function of DOC temperature according to various aging conditions. The current study reveals that the catalyst aging temperature is a more dominant factor than the aging duration in terms of the decrease in NO2 production performance through DOC. The DOC sample hydrothermally aged for 25 h at 750 °C has displayed the lowest NO2 to NOx ratio compared to the samples aged for 25 ~ 100 h at 650 °C. Also, in this study, the impact of hydrothermal aging of a DOC on the selective catalytic reduction (SCR) efficiency in a ‘DOC + SCR’ aftertreatment system was predicted by using transient SCR simulations. To validate the SCR simulation, this study has conducted a dynamometer test of a non-road heavy-duty diesel engine with employing a commercial ‘DOC + SCR’ system on the exhaust line. The current study has quantitatively estimated the effect of the variation in NO2 to NOx ratio due to the hydrothermal aging of DOC on the NOx removal efficiency of SCR. 相似文献
79.
Erfan Taherzadeh Shahram Javadi Morteza Dabbaghjamanesh 《International Journal of Automotive Technology》2018,19(6):1061-1069
Recently Plug-in hybrid electric vehicles (PHEVs) have gained increasing attention due to their ability to reduce the fuel consumption and emissions. In this paper a new efficient power management strategy is proposed for a series PHEV. According to the battery state of charge (SOC) and vehicle power requirement, a new rule-based optimal power controller with four different operating modes is designed to improve the fuel economy of the vehicle. Furthermore, the teaching-learning based optimization (TLBO) method is employed to find the optimal engine power and battery power under the specified driving cycle while the fuel consumption is considered as the fitness function. In order to demonstrate the effectiveness of the proposed method, four different driving cycles with various numbers of driving distances for each driving cycle are selected for the simulation study. The performance of the proposed optimal power management strategy is compared with the rule-based power management method. The results verify that the proposed power management method could significantly improve the fuel economy of the series PHEV for different driving conditions. 相似文献
80.
The wind pressure distribution and wind-induced vibration responses of long-span spatial groined latticed vaults (SGLVs) were numerically simulated, which always are ones of the most important problems in the structural wind resistance design. Incompressible visco-fluid model was introduced, and the standard k-εtwo equation model and semi-implicit method for pressure linked equation (SIMPLE) were used to describe the flow turbulence. Furthermore, the structural dynamic equation was set up, which is solved by Newmark-β method. And several sort of wind-induced vibration coefficients such as the wind-induced vibration coefficient corresponding to the nodal displacement responses and wind loads were suggested. In the numerical simulation where the SGLV consisting of the cylindrical sectors with different curved surface was chosen as the example,the influence on the relative wind pressure distribution and structural wind-induced vibration responses of the closed or open SGLV caused by such parameters as the number of cylindrical sectors, structural curvature and the ratio of rise to span was investigated. Finally, some useful conclusions on the local wind pressure distribution on the structural surface and the wind-induced vibration coefficients of SGLV were developed. 相似文献