首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
公路运输   1篇
水路运输   15篇
综合运输   5篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
21.
During ship collisions part of the kinetic energy of the involved vessels immediately prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can be stored in elastic hull vibrations during a ship collision.When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non-trivial part of the energy released for structural deformation during the collision can be absorbed as elastic energy in global ship hull vibrations, such that with strong ship sides less energy has to be spent in crushing of the striking ship bow and/or the struck ship side.In normal ship–ship collision analyses both the striking and struck ship are usually considered as rigid bodies where structural crushing is confined to the impact location and where local and global bending vibration modes are neglected. That is, the structural deformation problem is considered quasi-static. In this paper a simple uniform free–free beam model is presented for estimating the energy transported into the global bending vibrations of the struck ship hull during ship–ship collisions. The striking ship is still considered as a rigid body. The local interaction between the two ships is modeled by a linear load–deflection relation.The analysis results for a simplified model of a struck coaster and of a large tanker show that the elastic energy absorbed by the struck ship normally is small and varies from 1 to 6% of the energy released for crushing. The energy stored as elastic global hull girder vibrations depends on the ship mass, the local stiffness of the side structure, and of the position of contact. The results also show that in case of highly strengthened ship sides the maximum global bending strains during collisions can lead to hull failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号