首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1851篇
  免费   0篇
公路运输   181篇
综合类   656篇
水路运输   651篇
综合运输   363篇
  2018年   334篇
  2017年   290篇
  2016年   247篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   55篇
  2011年   204篇
  2010年   212篇
  2009年   44篇
  2008年   176篇
  2007年   122篇
  2005年   50篇
  2004年   41篇
  2003年   55篇
  2002年   16篇
  2000年   1篇
排序方式: 共有1851条查询结果,搜索用时 15 毫秒
111.
Since the 1980s, the precautionary principle has been drawing more and more international attention. This became particularly clear during the series of Conferences on the Protection of the North Sea, which addressed marine environmental protection, and initiated the application of the principle into maritime affairs. Although a unified concept of the precautionary principle is lacking, some typical formulations have been concluded in regional treaties and international documents, and components of the principle can be summarised (Part I and Part II). The precautionary principle has been adopted by international documents involving different fields of law of the sea, and been addressed by international courts and tribunals (Part III). While the precautionary principle is still not part of customary international law (Part IV), its increasing level of worldwide acceptance suggests that it will become a customary international law in the future.  相似文献   
112.
The aim of the paper was to determine the kinematic parameters that influence the occupant injury risk through a mathematical model. The developed model is a 2D model composed of 4 bodies (2 vehicles, thorax and head). The head and thorax are interconnected with a rotation joint and a torsion spring meant to stiffen the relative movement between the bodies. The thorax is connected with the vehicle body by a linear spring meant to simulate the seatbelt stiffness. The model was solved using Lagrange principle and the validation of the model was made through a crash test performed using the same initial conditions and comparing the obtained values of the displacement, velocity and acceleration parameters with the ones obtained with the mathematical model. The head and torso were chosen due to the fact that they are the common parts of the body that get injured, especially the head with the change of 80 % to cause fatal injury in car’s frontal collision. Once the model was validated, the stiffness of the seatbelt was modified in order to determine the behavior of the occupant in case of car frontal collisions. When the seatbelt stiffness was reduced, the occupant displacement and velocity increased, while by increasing the stiffness, these parameters decreased. The values of the developed model presented a high degree of similarity with the results obtained from the crash test with an error of 10 %. This model can be used by engineers to easily asses the occupant injury risk in case of vehicle frontal collisions.  相似文献   
113.
This study is focused on tools used in the industrial hot forging process of a front wheel forging (eventually–gear wheel) manufactured for the automotive industry. Four different variants were applied for the tools: 2 die inserts were coated with two different hybrid layers (GN + PVD type), i.e. AlCrTiN and AlCrTiSiN, one insert was only nitrided, and one was pad welded, to improve tool durability. The tool wear was analysed and represented by the material degradation on the working surface, based on the 3D scanning and the material growth of the periodically collected forgings. Additionally, the scanned tools were divided into two areas, in which it was found, based on the reliminary analysis, that various degradation mechanisms are predominant. Microstructural and hardness measurements of the analyzed tools were also performed. Based on the results, it was found that, in the central part of the die insert (area A), thermo-mechanical fatigue and wear occurred, while in the area of the bridge insert (area B), only abrasive wear could be observed. For these areas (A and B), the loss of material was determined separately. In area A for the inserts with hybrid layer GN+AlCrTiSiN and gas nitrided, an intensive increase of wear took place, which was not observed for the pad welded and GN+AlCrTiN layer insert, for which, together with the increase of the forging number, a proportional growth of the loss of material occurred. In area B the weakest results were obtained for the insert with GN+AlCrTiSiN layer, while wear of other die inserts grew similar and proportional.  相似文献   
114.
Mixture faults detection is meaningful for gasoline engines because proper mixture is the basic prerequisite for healthy running of a combustion engine. Among existing methods for faults detection, the data-driven trend analysis technique is widely used due to the simplicity and efficiency in time-domain. The CUSUM (Cumulative Sum Of Errors) algorithm is good at real-time trend extraction, but it’s easy to be costly on the fuel trim signal during the engine in normal working conditions, which will increase battery energy consumption because engine failure is rarely occurs. Hence, the conventional treatment methods of artifacts in the CUSUM algorithm are modified by means of decay function and detection time analysis. The thresholds are tuned according to the characteristics of artifacts instead of residual variability, which leads to better results of trend extraction and less computation. Then, the revised CUSUM algorithm is used for monitoring the mixture abnormal behaviors, and the mixture faults can be detected in real time through analyzing the variation features of fuel trim signal. The lightweight faults detector using the advanced CUSUM algorithm (FD-A-CUSUM) is evaluated on the experimental data collected from a Ford engine. The validation results show that while engine works under normal conditions, the computation of FD-A-CUSUM has decreased by 72.79 % in comparison with the detection method using the original CUSUM algorithm (FD-O-CUSUM), and the false alarm ratio of FD-A-CUSUM is 3.37 %. Futhermore, the detection results of FD-A-CUSUM for two leakage faults have achieved 91.18 % test accuracy.  相似文献   
115.
Numerical modeling of ground response during diaphragm wall construction   总被引:2,自引:0,他引:2  
Construction of diaphragm wall panels may cause considerable stress changes in heavily overconsolidated soil deposits and can induce substantial ground movement. The 3D Lagrangian method was adopted to model the mechanical response of ground, including horizontal normal stress and shear stress, lateral ground displacement and vertical ground surface settlement, during the slurry trenching and concreting of diaphragm wall panels. Numerical results show that slurry trenching leads to horizontal stress relief of ground, reducing the horizontal stress of the ground from initial K0 pressure to hydrostatic betonite pressure. Wet concrete pressure lies between the hydrostatic bentonite pressure and the initial K0 pressure, so it can compensate partially the horizontal stress loss of the ground adjacent to the trench and thus reduce the lateral movement of the trench face as well as the vertical settlement of the ground surface.  相似文献   
116.
An efficient method for calculation of the slamming pressures on ship hulls in irregular waves is presented and validated for a 290-m cruise ship. Nonlinear strip theory was used to calculate the ship–wave relative motions. The relative vertical and roll velocities for a slamming event were input to the slamming calculation program, which used a two-dimensional boundary element method (BEM) based on the generalized 2D Wagner formulation presented by Zhao et al. To improve the calculation efficiency, the method was divided into two separate steps. In the first step, the velocity potentials were calculated for unit relative velocities between the section and the water. In the next step, these precalculated velocity potentials were used together with the real relative velocities experienced in a seaway to calculate the slamming pressure and total slamming force on the section. This saved considerable computer time for slamming calculations in irregular waves, without significant loss of accuracy. The calculated slamming pressures on the bow flare of the cruise ship agreed quite well with the measured values, at least for time windows in which the calculated and experimental ship motions agreed well. A simplified method for calculation of the instantaneous peak pressure on each ship section in irregular waves is also presented. The method was used to identify slamming events to be analyzed with the more refined 2D BEM method, but comparisons with measured values indicate that the method may also be used for a quick quantitative assessment of the maximum slamming pressures.  相似文献   
117.
An autonomous underwater vehicle (AUV) must use an algorithm to plan its path to distant, mobile offshore objects. Because of the uneven distribution of obstacles in the real world, the efficiency of the algorithm decreases if the global environment is represented by regular grids with all of them at the highest resolution. The framed quadtree data structure is able to more efficiently represent the environment. When planning the path, the dynamic object is expressed instead as several static objects which are used by the path planner to update the path. By taking account of the characteristics of the framed quadtree, objects can be projected on the frame nodes to increase the precision of the path. Analysis and simulations showed the proposed planner could increase efficiency while improving the ability of the AUV to follow an object.  相似文献   
118.
溃坝模拟的光滑粒子流体动力学方法及其粘性特性   总被引:1,自引:0,他引:1  
Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.  相似文献   
119.
二维水翼型空化流的数值计算   总被引:2,自引:0,他引:2  
In order to predict the effects of cavitation on a hydrofoil, the state equations of the cavitation model were combined with a linear viscous turbulent method for mixed fluids in the computational fluid dynamics (CFD) software FLUENT to simulate steady cavitating flow. At a fixed attack angle, pressure distributions and volume fractions of vapor at different cavitation numbers were simulated, and the results on foil sections agreed well with experimental data. In addition, at the various cavitation numbers, the vapor fractions at different attack angles were also predicted. The vapor region moved towards the front of the airfoil and the length of the cavity grew with increased attack angle. The results show that this method of applying FLUENT to simulate cavitation is reliable.  相似文献   
120.
After an aerial object enters the water, physical changes to sounds in the water caused by the accompanying bubbles are quite complex. As a result, traditional signal analyzing methods cannot identify the real physical object. In view of this situation, a novel method for analyzing the sounds caused by an aerial object’s entry into water was proposed. This method analyzes the vibrational mode of the bubbles by using empitical mode decomposition. Experimental results showed that this method can efficiently remove noise and extract the broadband pulse signal and low-frequency fluctuating signal, producing an accurate resolution of entry time and frequency. This shows the improved performance of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号