首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1718篇
  免费   16篇
公路运输   785篇
综合类   51篇
水路运输   399篇
铁路运输   25篇
综合运输   474篇
  2023年   9篇
  2022年   20篇
  2021年   9篇
  2020年   4篇
  2019年   11篇
  2018年   70篇
  2017年   85篇
  2016年   165篇
  2015年   17篇
  2014年   66篇
  2013年   189篇
  2012年   96篇
  2011年   166篇
  2010年   158篇
  2009年   74篇
  2008年   131篇
  2007年   66篇
  2006年   29篇
  2005年   24篇
  2004年   29篇
  2003年   14篇
  2002年   15篇
  2001年   17篇
  2000年   29篇
  1999年   15篇
  1998年   13篇
  1997年   17篇
  1996年   22篇
  1995年   24篇
  1994年   9篇
  1993年   16篇
  1992年   13篇
  1991年   11篇
  1990年   4篇
  1988年   11篇
  1987年   5篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1734条查询结果,搜索用时 62 毫秒
171.
This work studies the impact of five parameters: CO and HC engine-out emissions, space velocity, average value and profile of exhaust temperature, on Diesel CO and HC tail-pipe emissions. The first part of this work is conducted on a reactor and shows that both HC and CO light-off temperature increases with CO and HC input concentration. CO and HC initial concentration influence the adsorption/desorption capacities of HC only at high temperatures. Space velocity also influences CO and HC conversion efficiency. The second part of this work studies the impact of different combinations of HC and CO engine-out emissions on CO and HC conversion and tail-pipe emissions in the case of New European Driving Cycle. This part proposes that a Diesel oxidation catalyst must be mainly studied at the Urban Part of NEDC, as the CO and HC conversions are very high at the extra-urban part of NEDC. CO and HC conversion efficiencies are also dependent on exhaust temperature and catalytic volume. In the case of two different profiles of exhaust temperature with the same average temperature, CO and HC conversion efficiency is lower in the case of the smoother profile.  相似文献   
172.
Air suspension systems have been implemented in various commercial vehicles, such as buses and special purpose trucks, because of the comfortable ride and easy height control. An evaluation of the durability of vehicle parts has been required for service life and safety starting in the early stages of design. The cyclic load applied to the vehicle can cause fatigue failure of parts, such as the suspension frame. This paper presents a method to predict the fatigue life of the suspension frame at the design stage of the air suspension system used in a heavy-duty vehicle. To estimate the fatigue life using the SN method, the Dynamic Stress Time History (DSTH) is necessary for the part of interest. DSTH can be obtained from the results of the flexible body dynamic analysis using the Belgian road simulation and the Modal Stress Recovery (MSR) method. Furthermore, the reliability of the predicted fatigue life can be evaluated by considering the variations in material properties. The probability and distribution of the expected life cycle can be obtained using experimental design with a minimum number of simulations. The advantage of using statistical methods to evaluate the life cycle is the ability to predict replacement time and the probability of failure of mass-produced parts. This paper proposes a rapid and simple method that can be effectively applied to the design of vehicle parts.  相似文献   
173.
Depth of field effects in laser sheet imaging were considered for droplet sizing of a pre-swirl spray. A pre-swirl spray is formed before the hollow-cone type main-swirl spray from a D.I. gasoline injector, and shows transient characteristics with high axial velocity. A microscopic imaging technique was applied to obtain high spatial resolution LIF tomograms of the pre-swirl spray. A 1 mm thick Nd:YAG laser sheet was used as a light source to make the LIF tomograms that were imaged using a high-resolution CCD camera. The droplet sizing of the pre-swirl spray was carried out using an image processing technique. In the image processing procedure, the laser sheet-straddling large-sized droplets were carefully taken into account to remove the errors caused by the depth of field effects from the limited thickness and the energy distribution of the laser sheet. The mean intensity of the individual droplets and the line profile of the LIF signal around the droplet edge were inspected to screen the laser sheet-straddling large-sized droplets. In order to consider the effects of the size-dependent LIF signal intensity, the size-classified or ensemble-averaged mean intensity of the individual droplets was introduced. The mean droplet sizes such as AMD and SMD were calculated using only screened droplets, and they slightly increase before considering the depth of field effects.  相似文献   
174.
This study summarizes engine speed and load effects on HC species emissions from premixed charge compression ignition (PCI) and conventional diesel combustion, and it evaluates diesel oxidation catalyst (DOC) formulations on a gas flow reactor for the purpose of diesel particulate filter regeneration or lean NOx trap desulfation. HC emissions are sampled simultaneously by a Tedlar bag for light HC species and by a Tenax TA™ adsorption trap for semi-volatile HC species, and they are analyzed by gas chromatography with a flame ionization detector. The bulk temperature and residence time during combustion are key parameters that are important for understanding the effects of speed and load on engine-out HC emissions. The degree of post-flame oxidation is higher in PCI than in conventional combustion, and it is increased for PCI with a higher speed and load, as indicated by a lower fuel alkanes/THC ratio, a higher alkenes/fuel alkanes ratio, and a higher methane/THC ratio. Ethene and n-undecane are two representative HC species, and they are used as a surrogate mixture in the gas flow reactor to simulate PCI and conventional combustion with in-cylinder post fuel injection. Among the three DOC formulations tested, the catalyst with constituent precious metals of platinum and palladium (PtPd) showed the best light-off performance, followed by PtPd with an addition of cerium dioxide (PtPd+CeO2), and platinum (Pt), regardless of exhaust compositions. Conventional combustion exhaust composition shows a lower light-off temperature than that of PCI, regardless of catalyst formulation.  相似文献   
175.
This work presents an experiment on the relationships between subjective and objective evaluations of vehicle handling. Ten cars were examined objectively in several open-loop driving dynamics manoeuvres and subjectively by test persons in typical traffic situations. Results are extracted from a stationary test (the Slowly Increasing Steer Test), and a dynamical test (the Frequency Response Test). The subjective measurements are obtained from drivers on a rural road course via a questionnaire, which was developed to separately investigate the quantity level perception, the so-called “Niveau”, and the more qualitative “Liking”. These subjective “measurements” are embedded into a two-channel definition of “Steering Comfort” as a genus for “Steering Discomfort” and “Character”. The article concentrates on developing a statistical method for the consideration of correlations amongst the subjective/objective data. In doing so, the variance in example subjective Niveau ratings can be significantly explained by several objective quantities. Indicators for co-domains of validated discomfort characteristics and hints for endeavouring character Liking ranges are detected.  相似文献   
176.
People use cars so frequently that they always consider the air-conditioning, and thermal comfort of the driver and passenger when buying a new car. Therefore accurate simulation of the thermal performance of automobile air conditioners to improve human comfort has become increasingly important. In order to improve the thermal comfort of passengers, 3-D flow motion and thermal behavior within vehicles must be analyzed. In this paper, a numerical simulation was used to investigate thermal behavior in a vehicle. Because air temperature at an air vent is related to the cooling capacity of the air conditioner, the cooling capacity was calculated using ɛ-NTU (effective number of transfer unit) theoretical equations. Using the air temperature relationship between inlet and outlet vents as boundary conditions, a 3-D unsteady κ-ɛ turbulent model was used to give a transient analysis simulation of the temperature field and flow conditions in a vehicle’s passenger cabin. Cooling cycle analysis and conjugate heat transfer analysis at the inside surface of the cabin’s ceiling, floor and sides were also considered. The predicted temperature distributions in the vehicles passenger cabin were in good agreement with those obtained experimentally.  相似文献   
177.
The potential for thermoelectric power generation (via waste heat recovery onboard automobiles) to displace alternators and/or provide additional charging to a vehicle battery pack has increased with recent advances in thermoelectric material processing. In gasoline fueled vehicles (GFVs), about 40% of fuel energy is wasted in exhaust heat, while a smaller amount of energy (30%) is ejected through the engine coolant. Therefore, exhaust-based thermoelectric generators (ETEG) have been a focus for GFV applications since the late 1980s. The conversion efficiency of modern thermoelectric materials has increased more than three-fold in the last two decades; however, disputes as to the thermal design of ETEG systems has kept their overall efficiency at limited and insufficient values. There are many challenges in the thermal design of ETEG systems, such as increasing the efficiency of the heat exchangers (hot box and cold plate), maintaining a sufficient temperature difference across the thermoelectric modules during different operating conditions, and reducing thermal losses through the system as a whole. This paper focuses on a review of the main aspects of thermal design of ETEG systems through various investigations performed over the past twenty years. This paper is organized as follows: first, the construction of a typical ETEG is described. The heat balance and efficiency of ETEG are then discussed. Then, the third section of this paper emphasizes the main objectives and challenges for designing efficient ETEG systems. Finally, a review of ETEG research activities over the last twenty years is presented to focus on methods used by the research community to address such challenges.  相似文献   
178.
The objective of this paper is to improve the performance estimation model of the internal flow field of a torque converter. Compared with performance experiment results, the converter based on the one-dimensional model does not satisfy the performance requirements demanded in practice. Therefore, we need to develop more predictable and reliable performance estimation models. In order to obtain shape information on three-dimensional blade geometry, a process of reverse engineering conducts a torque converter assembly, impeller, turbine and stator. In addition, a CFD simulation including mesh generation and post-processing was carried out to extract equivalent parameters from the internal flow field. The internal flow field can be explained by analyze the correlation between a performance estimation model and CFD analysis. The equivalent performance model adopts the variation of energy loss coefficients for a given operating condition according to the application of a changing energy loss coefficient by the least mean squares method. The estimated equivalent model improves the agreement in performance between experiments and the theoretical model. This model can reduce the error to within about 3 percent. Furthermore, this procedure for predicted performance achieves eminence in the estimation of the capacity factor.  相似文献   
179.
This paper establishes the simulation model of a city bus on the basis of the EQ6110 bus prototype and its experimental data. According to the actual urban driving cycle, the fuel economy and the traction performance of the EQ6110 city bus have been simulated, and factors such as the driving cycle, the loss of power to engine accessories, the gear-shifting strategy, the fuel shut-off strategy of the engine, etc., which influence on the bus’s fuel economy, are also quantitatively analyzed. Some conclusions are drawn as follows: (1) driving cycles have a great influence on the fuel economy of a city bus; (2) under the typical urban driving cycle of the public bus in China, the engine fuel shut-off strategy can save about 1 to 1.5 percent of the fuel consumption; and (3) the optimized gear-shifting rules can save 6.7 percent of the fuel consumption. Experimental results verify that the fuel economy for the EQ6110 public bus is improved by 7.2 pecent over the actual Wuhan urban driving cycle of the current public bus in China.  相似文献   
180.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号