首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1223篇
  免费   16篇
公路运输   556篇
综合类   45篇
水路运输   305篇
铁路运输   25篇
综合运输   308篇
  2023年   9篇
  2022年   20篇
  2021年   9篇
  2020年   4篇
  2019年   11篇
  2018年   31篇
  2017年   39篇
  2016年   78篇
  2015年   17篇
  2014年   66篇
  2013年   189篇
  2012年   66篇
  2011年   77篇
  2010年   73篇
  2009年   57篇
  2008年   77篇
  2007年   33篇
  2006年   29篇
  2005年   24篇
  2004年   20篇
  2003年   10篇
  2002年   13篇
  2001年   17篇
  2000年   29篇
  1999年   15篇
  1998年   13篇
  1997年   17篇
  1996年   22篇
  1995年   24篇
  1994年   9篇
  1993年   16篇
  1992年   13篇
  1991年   11篇
  1990年   4篇
  1988年   11篇
  1987年   5篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1239条查询结果,搜索用时 15 毫秒
91.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   
92.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   
93.
This research work presents fatigue life evaluation techniques for an automotive vehicle aluminum front subframe using virtual test simulation technology with nonlinear suspension components model. The technology was used for improving the accuracy of the polynomial model used in conventional analysis. The proposed nonlinear suspension components models were developed using direct approach. The effects of the nonlinear elements on the prediction of the fatigue life were also analyzed. Actual aluminum front subframe was tested using half-car road test simulator to verify the accuracy of the models. It was found that the proposed nonlinear models yield more accurate results than conventional polynomial models. The proposed virtual test simulation technology with nonlinear suspension components model can be used to predict fatigue life for vehicle chassis structures more accurately.  相似文献   
94.
Optimal control is generally not possible without information about the future coming up, and it is not easy to obtain an optimal solution even though the information is given a priori. In this paper, a control concept based on Pontryagin’s Minimum Principle (PMP) is introduced as an efficient solution to generate an optimal control trajectory for Hybrid Electric Vehicles (HVEs) when the performance of the vehicles is evaluated on scheduled driving cycles at a simulation level. The main idea of the control concept is to minimize Hamiltonian, which is interpreted as equivalent fuel consumption, and the Hamiltonian is characterized by a co-state, which is interpreted as a weighting factor for the electrical usage. A key aspect of the control problem is that an appropriate initial condition of the co-state is required to satisfy the boundary condition of the problem. In this study, techniques to calculate the Hamiltonian in different hybrid configurations are introduced, and a methodology to look for the initial condition of the co-state is studied, so that the controller is able to realize a desired State Of Charge (SOC) trajectory. To address the issue, we utilize a shooting method with multiple initial conditions based on the concept of the Newton-Raphson method, and all these techniques are realized in a backward looking simulator. The simulation results show that the PMP-based control is a very efficient approach to produce the optimal control trajectory, and the performance is compared to the optimal solution solved by Dynamic Programming (DP).  相似文献   
95.
This paper presents a method to assess of fatigue strength for resistance spot welded joints, which incorporates welding residual stress effects. To achieve this, first, a non-linear finite element analysis (FEA) was performed to simulate the spot-welding process. To validate the FEA results, the numerically calculated welding residual stresses of spot welds were then compared with experimental results measured by X-ray diffraction method. The residual stress distributions showed good agreement between calculations and experiments. To evaluate the effects of welding residual stress on the fatigue design criterion of resistance spot welded joints subjected to cross-tension load, the stress amplitude (σa-res) taking into account welding residual stress at a spot weld was proposed based on a modified Goodman equation incorporating the residual stress effect. Using the stress amplitude σa-res at the nugget edge of a spot weld, the ΔP ? Nf relations obtained as the fatigue test results for spot welded joints were systematically rearranged to the σa-res ? Nf relation. It was found that the proposed stress amplitude (σa-res) provides more reasonable and accurate fatigue design criterion of spot welded joints subjected to cross-tension load.  相似文献   
96.
In this study, a vehicle velocity estimation algorithm for an in-wheel electric vehicle is proposed. This algorithm estimates the vehicle velocity using the concept of effective inertia, which is based on the motor torque, the angular velocity of each wheel and vehicle acceleration. Effective inertia is a virtual mass that changes according to the state of a vehicle, such as acceleration, deceleration, turning or driving on a low friction road. The performance of the proposed vehicle velocity estimation algorithm was verified in various conditions that included straight driving, circle driving and low friction road driving using the in-wheel electric vehicle that was equipped with an in-wheel system in each of its rear wheels.  相似文献   
97.
In the year 2011, the Particle Measurement Program (PMP) in Europe started the regulation of the diesel vehicle’s nano-sized particle number density (PN) due to its high degree of harm to the human body. Concretely, the standard level of PN emission was introduced in the Euro 5+ and 6 emissions regulation with a limit (<6.0 × 1011#/km) for diesel light-duty vehicle. Therefore, the determination of suitable and sophisticated instruments for reliable particle sampling and analysis was essential in taking exact experimental data. Now, among the PN emission measuring devices suggested by the PMP, condensation particle counter (CPC) is a key equipment for measuring the particle number density in real time and it has been used extensively. However, CPC can cause different results depending on operating conditions of the saturator and condensation that induce different rates of particle growth. This study was conducted to analyze the effect of CPC calibrated by a two-particle generator with spray and soot type methods applied on the nano-sized particle distribution’s parameters such as number concentration and linearity. Also, in order to ensure the reliability for particle sensor system named as PPS, which had emerged as a useful diagnostic to making spatially and temporally resolved quantitative measurements of diesel PN concentration, it was compared with calibrated CPC system. As a result, nano-sized particle measuring system with CPC calibrated by spray type particle generator had a much higher counting efficiency, indicating a larger nano size available than soot type particle generator. And, comparative experimental results on the correlation between the particle number of CPC to a reflectance PPS system showed that above 5,000 #/cm 3 in number concentrations measured by CPC as well as PPS were found to be similar with good linear relationship.  相似文献   
98.
A fault detection method with parity equations is proposed in this paper. Due to its low cost implementation, the velocity of the motor is not measurable in electric parking brake (EPB) systems. Therefore, residuals are not reliable when estimating the motor velocity with a low-resolution encoder. In this paper, we propose a fault detection method with sensorless estimation using current ripples that estimates the position and velocity of the motor by detecting periodical oscillations of the armature current caused by rotor slots. In addition, this method can estimate the position and velocity of the motor with less computational effort than a state observer. Moreover, the method is less sensitive to motor parameters than model-based estimation methods. The effectiveness of this method is validated with experimental data, and the simulation results show that various faults have their own residual patterns. Therefore, we can detect the presence of faults by monitoring the residual signals.  相似文献   
99.
A 3000 cc diesel engine attached to an engine dynamo was used to test three newly developed electrostatic Diesel Particulate matter filtration Systems (DPS 1, 2, and 3) under four steady-state engine operating conditions: idle, 2000 rpm with no load, and 2000 rpm under 25% and 50% loads. Of the two developed alternatives, DPS 1 and DPS 2, DPS 2 comprises an ionization section, electrostatic field additional section and Flow-Through Filter (FTF), which achieved almost 90% removal of particulate matter (PM) under the engine’s operating conditions, and the efficiency of the FTF was maintained between 20% and 50%. Comparing the long-term performance of DPS 2 and DPS 3 (effectively a serial combination of two DPS 2s) with a commercially-available Diesel Particulate Filter (DPF), the DPS 2 and DPS 3 achieved almost the same efficiency for removing PM as the DPF but had significantly improved (75%∼90% lower) differential pressure drops.  相似文献   
100.
A roller vane type liquefied petroleum gas (LPG) pump was developed for a liquid phase LPG injection (LPLi) engine. Most of the LPG pumps used in the current LPLi engines are installed inside of the LPG tank, but this pump is intended to be installed outside of the LPG tank to overcome the difficulty of fixing an in-tank pump. Because LPG has a low boiling point and high vapor pressure, it usually causes cavitation in the pump and consequently deteriorates the flow rate of the pump. The purpose of this work is to optimize the design of the roller vane pump in order to suppress cavitation and increase the fuel flow rate by using a computational fluid dynamics (CFD) analysis. In order to achieve these goals, the intake port configuration and the rotor of the roller vane pump were redesigned and simulated using STAR-CD code. Computation was performed for six different models to obtain the optimized design of the roller vane pump at a constant speed of 2600 rpm and a constant pressure difference between the inlet and outlet of 5 bar. The computation results show that an increased intake port cross-section area can suppress cavitation, and the pump can achieve a higher flow rate when the rotor configuration is changed to increase its chamber volume. When the inlet pressure difference is 0.1 bar higher than the fluid saturation pressure, the pump reaches its maximum flow rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号