首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   0篇
公路运输   80篇
综合类   1篇
水路运输   16篇
铁路运输   3篇
综合运输   9篇
  2020年   1篇
  2018年   8篇
  2017年   11篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   12篇
  2012年   10篇
  2011年   6篇
  2010年   8篇
  2009年   13篇
  2008年   8篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
21.
The need for composites has been increasing in various industries because composites have good mechanical properties for their weight and superior stiffness and strength. The composites addressed in this study were multi-pore aluminum foam with a specific gravity of 1/10 composed of solid aluminum metal. This composite has excellent impact energy-absorption capability. In this study, impact tests on an aluminum foam core sandwich composite with a porous core were conducted to examine its mechanical properties. The specimen was a sandwich structure with an aluminum foam core, and different impact energies, such as 50J, 70J, and 100J, were applied to the specimen. Consequently, a maximum load of 5.5 kN occurred when the striker penetrated the upper face sheet in all experiments. The maximum load occurred at 4.2 ms for 50J, 3.5 ms for 70J, and 3.0 ms for 100J, indicating that the greater the impact energy was, the shorter the time was until the maximum load. After the maximum load occurred, that is, after the penetration of the upper face sheet, the striker penetrated 10 mm further, causing the core to be damaged in the 50J test, while the lower face sheet remained intact. In the 70J test, the striker penetrated the core and caused damage to the upper face sheet at 10 ms. Finally, in the 100J test, the striker penetrated both the upper face sheet and core and even the lower face sheet at 10 ms. Given the result above, the maximum load occurred when the striker penetrated the upper face sheet and the sandwich composite with aluminum foam core; the load then gradually decreased and then rapidly increased when the striker reached the lower face sheet, and the maximum load lasted slightly longer than the time required for the upper face sheet to be penetrated.  相似文献   
22.
In the year 2011, the Particle Measurement Program (PMP) in Europe started the regulation of the diesel vehicle’s nano-sized particle number density (PN) due to its high degree of harm to the human body. Concretely, the standard level of PN emission was introduced in the Euro 5+ and 6 emissions regulation with a limit (<6.0 × 1011#/km) for diesel light-duty vehicle. Therefore, the determination of suitable and sophisticated instruments for reliable particle sampling and analysis was essential in taking exact experimental data. Now, among the PN emission measuring devices suggested by the PMP, condensation particle counter (CPC) is a key equipment for measuring the particle number density in real time and it has been used extensively. However, CPC can cause different results depending on operating conditions of the saturator and condensation that induce different rates of particle growth. This study was conducted to analyze the effect of CPC calibrated by a two-particle generator with spray and soot type methods applied on the nano-sized particle distribution’s parameters such as number concentration and linearity. Also, in order to ensure the reliability for particle sensor system named as PPS, which had emerged as a useful diagnostic to making spatially and temporally resolved quantitative measurements of diesel PN concentration, it was compared with calibrated CPC system. As a result, nano-sized particle measuring system with CPC calibrated by spray type particle generator had a much higher counting efficiency, indicating a larger nano size available than soot type particle generator. And, comparative experimental results on the correlation between the particle number of CPC to a reflectance PPS system showed that above 5,000 #/cm 3 in number concentrations measured by CPC as well as PPS were found to be similar with good linear relationship.  相似文献   
23.
The demand for NOx after-treatment system has increased dramatically due to the stricter NOx emission regulations for diesel vehicles. The urea-SCR system is one of the NOx after-treatment methods found to be quite effective to meet the regulation requirement enforced by various authorities including the Euro-6. In order to develop an effective urea-SCR system, it is critical to establish an even distribution of reductant over the catalyst surface since this favorable distribution can increase reduction reaction and in turn, improve NOx conversion efficiencies. In the current study, a number of design variations of the urea-SCR system which included two mixer types and three decomposition pipe lengths, were evaluated systematically using CFD analysis and experimental measurements. The purpose of the CFD analysis was to estimate the distribution of reductant within the urea-SCR system with a specific configuration and the purpose of the engine emission test was to measure the amount of NOx reduction, respectively. The results from the systematic analysis revealed the relation between the reductant distribution over the SCR and the performance of the NOx reduction.  相似文献   
24.
In this paper, a theoretical approach is suggested for predicting the structural performances and weight reduction rate of a car body with a box-type section when its material is substituted with a lightweight material for weight saving. For the material substitution design of a car body for rolling stock, bending, axial, and twisting deformations should be considered at constant stiffness and strength conditions. To compare the weight reduction effects on different material applications, some new indices were derived from a structural performance point of view. The derived indices provide good measures to estimate weight reduction by material substitution design and can be effectively applied to the conceptual design of a car body.  相似文献   
25.
In this paper, the effects of residual stresses on the ultimate strength of stiffened cylinders are numerically investigated with an emphasis on shakedown which might occur during the service of these structures. Residual stresses caused by two types of actions, namely, cold bending and welding, are simulated with simplified approaches in numerical analysis. Cold bending stresses are simulated by simulating cold rolling and elastic springback until the desired curvature for cylindrical shell is obtained. Welding is simulated by applying cooling down to a certain temperature on the elements adjacent to stiffener-shell joints to obtain weld-shrinkage with realistic magnitudes. Six small-scale externally pressurized ring-stiffened cylinder models are utilized to evaluate the appropriateness of the method for inclusion of welding residual stresses in numerical analysis by comparing the experimental and numerical results. Ultimate strength analyses are then performed for a reference ring-stiffened cylinder model under radial pressure and stringer-stiffened cylinder under axial loading. To assess the effect of shakedown, after applying cyclic compressive loading to the ring-stiffened cylinder model, the level of stress relief and the change in the ultimate strength are evaluated.  相似文献   
26.
Ever since vehicle noise, vibration, and harshness (NVH) reduction technology made dramatic improvements, vehicle interior noises represented by Squeak and Rattle (S/R) becomes an ever more important factor to improve the emotional quality of vehicles. Generally, people detect S/R noises on automotive interior parts, brake system, suspension, Body in White (BIW), etc. Among them, the rear-glass joint is a major source for vehicle interior noise, and can cause S/R noises under a variety of environmental and driving conditions. This study uses, two approaches, experimental and numerical approaches, to define the cause of S/R noise at the rear-glass section. Based on these two approaches, this study confirms that S/R noises generate through the contact between bottom side of molding and BIW. The sealant penetration length, panelmolding distance, and sealant width are the parameters affecting noise generation. In addition, this study created an optimal design with Design of Experiments (DOE) of the rear-glass joint. The design maximized the sealant penetration length, which is a parameter that majorly affects noise. The optimal design comprises of two steps: sealant injections shape optimization and rear-glass joint parameter optimization. Each step is carried out with FEA and validated by sealant penetration experiments. Through these optimizations, this study obtained an optimum combination of design parameters and fignificantly reduced the noise generated by rear-glass section.  相似文献   
27.
Changing market regulations in South Korea have allowed diesel-fueled passenger cars in the domestic market. The diffusion of diesel cars is tied to issues of environmental impact, energy supply and demand, and changes in tax revenue. Policymakers can influence demand for diesel vehicles to protect social welfare and to observe international environmental protection laws. On the supply side, carmakers need to know consumer preferences regarding new vehicles to arrive at development strategies.This study uses microsimulated demand forecasting to address these issues and predict consumer demand for diesel passenger cars. The model accommodates governmental policies and car attributes such as price and engine efficiency. We find that consumers will likely prefer diesel passenger cars to gasoline ones due to the low operation costs of the former in spite of high purchase price when diesel is relatively cheaper than gasoline. Finally we find that diesel passenger cars will capture a 42% market penetration ratio under the pricing system suggested by the Ministry of Environment of Korea.  相似文献   
28.
The effects of split injection, oxygen enriched air, and heavy exhaust gas recirculation (EGR) on soot emissions in a direct injection diesel engine were studied using the KIVA-3V code. When split injection is applied, the second injection of fuel into a cylinder results in two separate stoichiometric zones, which helps soot oxidation. As a result, soot emissions are decreased. When oxygen enriched air is applied together with split injection, a higher concentration of oxygen causes higher temperatures in the cylinder. The increase in temperature promotes the growth reaction of acetylene with soot. However, it does not improve acetylene formation during the second injection of fuel. As more acetylene is consumed in the growth reaction with soot, the concentration of acetylene in the cylinder is decreased, which leads to a decrease in soot formation and thus soot emissions. A combination of split injection, a high concentration of oxygen, and a high EGR ratio shows the best results in terms of diesel emissions. In this paper, the split injection scheme of 75.8.25, in which 75% of total fuel is injected in the first pulse, followed by 8°CA of dwell time, and 25% of fuel is injected in the second pulse, with an oxygen concentration of 23% in volume and an EGR ratio of 30% shows a 45% reduction in soot emissions, with the same NOx emissions as in single injection.  相似文献   
29.
In the shipbuilding industry, different computer-aided design (CAD) systems are used for different design domains, structure, and outfitting. We need to exchange data among different CAD systems such as Tribon, AutoCAD, Intergraph or PDMS to complete the whole design and production process. There are two approaches to data exchange. One is direct translation; the other is indirect translation, which is based on a neutral format. If we use a neutral format, the data specification is open to the public and the design model can be used by other CAD systems, including next-generation CAD systems. In this paper, we propose an indirect method that uses ISO 10303 (STandard for the Exchange of Product model data) AP227 and ISO 15926 to define neutral formats. A separate ShapeDB is constructed to manage the geometry information, referenced to the catalogue data defined by ISO 15926. An experimental implementation for data exchange between Tribon and PDMS is described.  相似文献   
30.
Idle stop and go (ISG) is a low cost but very effective technology to improve fuel efficiency and reduce engine emissions by preventing unnecessary engine idling. In this study, a new method is developed to improve the performance of conventional ISG by monitoring traffic conditions. To estimate frontal traffic conditions, an ultra-sonic ranging sensor is employed. Several fuzzy logic algorithms are developed to determine whether the engine idling is on or off. The algorithms are evaluated experimentally using various data gathered in real areas with traffic congestion. The evaluation results show that the method developed can reduce the chance of false application of ISG significantly while improving fuel efficiency up to 15%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号