To assess the vulnerability of congested road networks, the commonly used full network scan approach is to evaluate all possible scenarios of link closure using a form of traffic assignment. This approach can be computationally burdensome and may not be viable for identifying the most critical links in large-scale networks. In this study, an “impact area” vulnerability analysis approach is proposed to evaluate the consequences of a link closure within its impact area instead of the whole network. The proposed approach can significantly reduce the search space for determining the most critical links in large-scale networks. In addition, a new vulnerability index is introduced to examine properly the consequences of a link closure. The effects of demand uncertainty and heterogeneous travellers’ risk-taking behaviour are explicitly considered. Numerical results for two different road networks show that in practice the proposed approach is more efficient than traditional full scan approach for identifying the same set of critical links. Numerical results also demonstrate that both stochastic demand and travellers’ risk-taking behaviour have significant impacts on network vulnerability analysis, especially under high network congestion and large demand variations. Ignoring their impacts can underestimate the consequences of link closures and misidentify the most critical links. 相似文献
The available highway alignment optimization algorithms use the total cost as the objective function. This is a single objective optimization process. In this process, travel‐time, vehicle operation accident earthwork land acquisition and pavement construction costs are the basic components of the total cost. This single objective highway alignment optimization process has limited capability in handling the cost components separately. Moreover, this process cannot yield a set of alternative solutions from a single run. This paper presents a multi‐objective approach to overcome these shortcomings. Some of the cost components of highway alignments are conflicting in nature. Minimizing some of them will yield a straighter alignment; whereas, minimizing others would make the alignment circuitous. Therefore, the goal of the multiobjective optimization approach is to handle the trade‐off amongst the highway alignment design objectives and present a set of near optimal solutions. The highway alignment objectives, i.e., cost functions, are not continuous in nature. Hence, a special genetic algorithm based multi‐objective optimization algorithm is suggested The proposed methodology is demonstrated via a case study at the end. 相似文献
Freight forecasting models have been significantly improved in recent years, especially in the field of goods vehicle behavior modeling. On the other hand, the improvements to commodity flow modeling, which provide inputs for goods vehicle simulations, were limited. Contributing to this component in urban freight modeling systems, we propose an error component logit mixture model for matching a receiver to a supplier that considers two-layers in supplier selection: distribution channels and specific suppliers. The distribution channel is an important element in freight modeling, as the type of distribution channel is relevant to various aspects of shipments and vehicle trips. The model is estimated using the data from the Tokyo Metropolitan Freight Survey. We demonstrate how typical establishment survey data (i.e. establishment and outbound shipment records) can be used to develop the model. The model captures the correlation structure of potential suppliers defined by business function and provides insights on the differences in the supplier choice by distribution channel. The reproducibility tests confirm the validity of the proposed approach, which is currently integrated into a metropolitan-scale agent-based freight modeling system, for practical use.
Transportation - Speed prediction of different transport modes is important in applications such as route planning, transport modelling and energy calculations. In this paper we model bicycle speed... 相似文献
This paper develops a conceptual framework for the generation of activity and travel patterns in the context of more general
structures and presents an integrated model system as a step toward development of an improved travel demand forecasting model
system. We propose a two-stage structure to model activity and travel behavior. The first stage, the stop generation and stop/auto
allocation models, consists of the choices for the number of household maintenance stops and the allocation of stops and autos
to household members. The second stage, the tour formation model, includes the choices for the number of tours and the assignment
of stops to tours for each individual, conditional on the choices in the first stage. Empirical results demonstrate that individual
and household socio-demographics are important factors affecting the first stage choices, the generation of maintenance stops
and the allocation of stops and autos among household members, and the second stage choices, the number of tours and the assignment
of stops to tours.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献