首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3378篇
  免费   23篇
公路运输   609篇
综合类   977篇
水路运输   1075篇
铁路运输   313篇
综合运输   427篇
  2023年   6篇
  2022年   19篇
  2021年   42篇
  2020年   28篇
  2019年   12篇
  2018年   344篇
  2017年   305篇
  2016年   271篇
  2015年   35篇
  2014年   60篇
  2013年   70篇
  2012年   151篇
  2011年   332篇
  2010年   343篇
  2009年   183篇
  2008年   293篇
  2007年   258篇
  2006年   158篇
  2005年   144篇
  2004年   69篇
  2003年   85篇
  2002年   35篇
  2001年   25篇
  2000年   40篇
  1999年   25篇
  1998年   16篇
  1997年   7篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
排序方式: 共有3401条查询结果,搜索用时 78 毫秒
941.
In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.  相似文献   
942.
Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.  相似文献   
943.
Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.  相似文献   
944.
An experimental investigation is performed to assess the relation of interference performance on the total resistance of a pentamaran model advancing in calm water. For this motivation, the total drag of the ship is performed for several values of asymmetric outrigger configuration and hull separation, altering the Froude number in the range 0.3–0.9. Our results indicate that remarkable changes in resistance require notable changes in transverse distance values (hull separation) when wave interference may occur. In addition, there is no single configuration that consistently outperforms the other configurations across the entire speed range and the optimum interference factor ?0.2 appears at a Froude number of 0.45 in S/L=0.33 with the outrigger outer position: asymmetric outboard for A3 configuration.  相似文献   
945.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0°, 5°, 10°, and 15°. For each configuration, investigations are conducted with depth Froude numbers (Fr H ) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   
946.
This article presents a systematic review and qualitative synthesis of the use of simulators in maritime education and training (MET), with a focus on bridge operations during navigation training and assessment. The review found 34 articles published in a wide range of academic journals, displaying a global field of research consisting of three main disciplines: Maritime professionals (n = 15), Human factors (n = 13) and Education (n = 6). An important conclusion made after synthesising the results of the studies is that while the potential of using simulators in training and assessment are clear, little is known about which instructional practices would ensure valid and reliable results of simulator-based education. Since MET institutions train their students for one of the most safety-critical industries in the world, there is a need for empirical studies that explore the use of simulator-based training and assessment further to lay the foundation for an evidence-based educational practice.  相似文献   
947.
Institutes imparting training in marine engineering require replication of shipboard ambience for strengthening the competencies. For building an engineering centre for training, five options at different physical levels were considered based on a model of a new liquefied natural gas tanker ship build. A mock-up facility, simulator, full-scale engine room, scaled down version and a combination arrangement with live and dummy equipment were the options. Analytic hierarchy process was applied for selecting a suitable option based on criteria of cost, effectiveness in attaining competencies, practicability and environmental conduciveness. Analyses were carried out on the eigenvalues based on eight subselection criteria. The combination of live equipment (boilers and turbo alternator) and non-live shipboard equipment (auxiliaries) was chosen based on the global weightages obtained from the pairwise comparison matrix computations. The reliability was ascertained from the consistency index which was less than 0.1. For selection of the learning modes and the equipment, a constructivist approach of learners reflecting and choosing the learning mode was adopted. Industry practitioners were made into learner groups composed of trainers, shipboard personnel and company personnel. Established competencies were assigned as scores to the different learning modes. ANOVA application and statistical methods were used to analyse the scores to verify if there were too much variation in the choices. The calculated F ratio values were low (0.14 to 0.40) compared to the reference values indicating that the choices were even. The chi-squared test indicated that the group composition did have an influence on choosing the learning mode and equipment for training. The objective of identifying the learning mode and equipment for the training centre was achieved.  相似文献   
948.
谢彬  陈铖  张戈星 《船舶工程》2017,39(S1):180-182
本文针对我国重点世纪工程-港珠澳大桥岛隧工程在施工中碰到的铺设整平已完成的碎石基床上出现严重回淤现象的问题,提出了使用一套定点清淤装置解决该问题的应用方法。该方法通过升降调节油缸以调整吸头的垂直高度,在垄沟进行清淤作业时保证清淤后基床的平整度并保护吸头不被基石阻挡而损坏。为了补偿因挠度差异产生的轴变化量,根据采集到的GPS信号通过PID控制方式实时调节油缸伸缩。本文从清淤系统的PLC电控方面展开,详细介绍了清淤功能的实现方式。  相似文献   
949.
The district modified stiffness method (DMSM) considers the effect of joints and hand holes on the stiff-ness of the lining ring, assuming the stiffness around the joint and hand hole is to be reduced and the stiffness else-where is not changed. Considering the stiffness reduction of the lining ring caused by the segment’s circumferential joint, the internal force of the lining structure, the ground surface settlement and the displacement response of the surrounding soil body induced by shield driving are analyzed by an HS small strain constitutive model, and a 3D FEM model is established to analyze the interactions among the tunnel, soil body and building to apply to the dou-ble-line running tunnel of Shanghai Metro Line 11, which crosses under a historic building. In contrast, a 3D numeri-cal model based on the routine method (RMM) is set up and a comparison with the site measured data is conducted,with results indicating that they agree very well. The simulation results show that the existing building not only changes the surface settlement trough but also largely reduces horizontal displacement at the corresponding measuring points of the settlement trough; the distortion values of the existing building are related to the positions of the tunnel face and the location of the building; and the final distortion doesn’t decrease after completion of tunnel construction, but major residual distortion remains. This simulation method provides a reference for the control of disturbances during shield construction in soft rock. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
950.
The shield tunnel is an ultra-long linear space. It will cause a lot of dust during the tunnel maintenance and overhaul operation, which is extremely unfavorable to the physical and mental health of the construction personnel and the environment outside the tunnel. It is difficult to guarantee the ventilation effect of the linear space using the conventional dust removal technology, which directly affects the construction safety and overhaul period. Therefore, based on the overhaul of a cross-river tunnel in Shanghai, combined with Computational Fluid Dynamics (CFD) simulation, device optimization and process combination, a three-stage dust reduction standardization process for tunnel overhaul construction is proposed, namely taking a water sprayer at the working point to control the dust at the source (primary protection); installing electrostatic dust removal and water filtration dust removal equipment in the tunnel(secondary protection); and installing two sets of water curtain spray device at the two tunnel exits to prevent dusts from diffusing into the atmosphere. It explores the actual dust-reducing effects of different dust-removing measures and layout combinations, laying a technical foundation for green and efficient dust reduction. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号