首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3306篇
  免费   315篇
公路运输   1052篇
综合类   1067篇
水路运输   972篇
铁路运输   453篇
综合运输   77篇
  2024年   15篇
  2023年   35篇
  2022年   174篇
  2021年   178篇
  2020年   144篇
  2019年   71篇
  2018年   79篇
  2017年   91篇
  2016年   62篇
  2015年   125篇
  2014年   204篇
  2013年   196篇
  2012年   245篇
  2011年   271篇
  2010年   262篇
  2009年   229篇
  2008年   262篇
  2007年   257篇
  2006年   226篇
  2005年   238篇
  2004年   77篇
  2003年   54篇
  2002年   31篇
  2001年   39篇
  2000年   46篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
排序方式: 共有3621条查询结果,搜索用时 0 毫秒
241.
二郎山隧道长13.4km,是雅安至康定高速公路的控制性工程之一,隧址区极其复杂的地形条件、地质条件和极其敏感的环境条件,严重制约路线走廊选线。通过对隧址区地形、地质、环境进行综合分析研究,提出二郎山隧道K线和F线2个走廊方案进行比选,结合洞外工程,从工程规模、抗灾减灾、运营节能、实施难度等多方面论证,最终推荐工程规模较小、抗灾能力强、行车安全性较高及利于洞外互通布设的F线方案。  相似文献   
242.
赵靖  郑喆  韩印 《中国公路学报》2019,32(3):135-144
为了提高排阵式交叉口这一非常规信号交叉口的运行效率,对其延误和最佳周期进行分析。首先针对先直行后左转、先左转后直行和直行左转交替通行3种信号相位相序,通过对排序区内车辆驶入、驶离、受信号控制阻滞等车流运行情况的分析,构建可反映排阵式交叉口车辆2次停车启动的车均延误计算模型。通过仿真对比可知,左转和直行延误估算误差均在10%范围内。在此基础上,以交叉口总延误最小为目标,考虑清空时长、主、预信号相位差、绿灯时长等约束条件,建立排阵式交叉口最佳周期理论模型。针对不同排阵式控制进口道数量设置的情况,通过对最佳周期的拟合分析,建立最佳周期简化模型。与理论模型相比,最佳周期简化模型的拟合优度在0.935~0.972范围内。通过模型对比和案例分析,对最佳周期简化模型的优化效益和稳定性进行检验。研究结果表明:在非饱和状态下,建立的最佳周期模型的平均误差和均方误差分别为2.13%和2.39%,均小于Webster模型和HCM2010模型的计算结果,具有较高的准确性和稳定性,案例中可降低车均延误36.46%;相较于传统信号控制交叉口,建议排阵式交叉口采用较小的周期时长,且当关键流量比大于0.6时尤为显著,分析中发现最佳周期减小14.53%~34.65%。  相似文献   
243.
交通是能源消纳的重要领域,其对社会能源结构的调整和节能减排具有重要的影响和带动作用。在陆路交通方面,轨道交通和小型客运车辆的电气化发展方向相对清晰,而公路货运尚无明确的技术路线。为充分利用清洁能源,减少化石能源在交通领域中的使用,发展并推广电气化公路技术,对重载卡车的蓄电池、燃料电池、混合动力3种电气化方案进行对比分析,结合卡车负载的特点,对不同电气化方案进行评估。研究融合新能源发电及并网、混合动力技术、智能驾驶技术的电气化公路技术,从车辆动力技术、供电线路、受电弓与计费、新能源并网、编组智能驾驶运行5个方面对电气化公路方案进行介绍,可以实现公路货运系统的绿色、安全、高效运行。以10公里线路电气化为例,进行规划和成本估算,构建单车和区域(或路段)电气化的运营成本计算模型,基于燃油消耗和阻力分析2种方法进行计算。对车辆购置及改装、基础设施建设、可再生能源发电、系统环保效益等4个方面进行技术分析与成本测算。从供能技术变革、商业模式和推广路线3个角度对电气化公路技术的未来推广进行论证展望。研究结果表明:电气化公路技术的应用与规模化能够带来巨大的经济与环境收益,其中的混合动力方案与架空线输电方案为面对未来可能的储能技术变革与无线输电普及打下重要的基础,提供了拓展空间,也是重载货车实现智能驾驶的重要步骤;与燃油驱动相比,电驱动百公里成本减少96元,单一重卡年运营成本减少18.8万元,百公里污染物(如:碳氧化物、氮氧化物等)均减少50%以上。  相似文献   
244.
本文作为一个讲座对以往研究成果作一综述。回顾了当前采用的3种隧道设计方法,提出了基于数值极限分析的地层-结构法,克服了地层-结构法缺点,可以求得设计所需的围岩稳定安全系数,解决了当前设计中的人为性问题。对隧道深浅埋分界线进行了探索,叙述了基于散体理论的隧洞深浅埋分界标准。提出了基于弹塑性理论的隧洞深浅埋分界标准,并对2种分解标准的优缺点进行了评述。阐述了隧道设计计算的5个基本理念: 1)隧道设计必须满足运行和施工中安全要求,提出初期支护后围岩安全系数必须保证施工安全; 2)隧道设计计算模型必须适应不同工程地质条件、围岩压力特征,符合隧道实际受力情况; 3)必须符合现代围岩压力理论与现代支护原理,充分发挥围岩自承作用; 4)隧道结构计算模型也应符合结构实际受力状态,树立初期支护作为围岩加固材料,按塑性理论计算的新理念; 5)采用合理的计算方法与计算参数,确保隧道设计计算的科学性。最后以一个地铁车站为例,采用本讲座提出的方法介绍了Ⅱ、Ⅲ、Ⅴ级围岩中隧道的设计方法与成果。  相似文献   
245.
郑鑫  郭春  王欣  王帅帅 《隧道建设》2019,39(7):1141-1146
为探究圭嘎拉高海拔隧道施工人员体力劳动强度水平,评价施工工序劳动强度,选择圭嘎拉隧道进口段(海拔4 300 m)及1#斜井段(海拔4 560 m)的施工人员作为测试对象,分别测量不同工序下施工人员的生理指标(心率、血氧饱和度、耗氧量)。基于耗氧量计算能量代谢率,进而计算各工序的劳动强度指数。结果表明: 1)260 m的海拔高差造成的施工综合劳动强度指数差异具有统计学意义(P<0.05); 2)二次衬砌钢筋绑扎是所测施工工序中劳动强度最大的工序,该工序下施工人员的心率、血氧饱和度和平均能量代谢率都出现超过卫生限值的情况,劳动强度指数达到35(极重); 3)海拔为4 300~4 560 m时,隧道各施工工序劳动强度大部分为中度-极重度。  相似文献   
246.
为了对比研究温拌改性剂RH和Sasobit对浇注式沥青混合料路用性能的影响,在油石比为8.5%、9.0%、9.5%的浇注式沥青混合料中分别掺入0、1%、2%、3%的温拌改性剂RH和Sasobit,并通过刘埃尔试验、贯入度试验、车辙试验和低温弯曲试验对浇注式沥青混合料性能进行检测.试验结果表明,RH和Sasobit能有效提高浇注式沥青混合料的流动性,且RH的降黏效果优于Sasobit;RH使浇注式沥青混合料的高温性能稍有降低,而Sasobit能提高浇注式沥青混合料的高温性能;RH和Sasobit均对浇注式沥青混合料的低温抗裂性能有不利影响,其掺量不宜过高.  相似文献   
247.
双反弯曲线钢箱梁桥由于存在弯扭耦合效应,会引起截面扭转、支座反力不均匀等现象,受力较为复杂.针对双反弯曲线钢箱梁桥的剪力滞效应,本文通过采用壳单元建立空间精细化有限元模型,详细讨论了其横向及纵向“剪力滞”效应的规律,可为今后类似桥梁的设计计算提供参考.  相似文献   
248.
郑新定  王红卫  周健 《隧道建设》2013,33(9):720-725
人为因素是导致隧道事故的主要原因,针对已有的人为失误分析模型在量化计算和风险控制方面的不足,提出了改进的S Reason分析和控制模型,以减少盾构隧道施工期的风险事故。结合隧道工程的施工特点,该模型相对于现有的S Reason模型提出以下2点改进: 1)以人为失误的控制难度权值为度量,找出风险事故的最优控制路径; 2)通过控制最优控制路径中的人为失误截断风险的事故链,同时利用反馈路径实时反馈控制效果。利用该模型对管片密封材料损伤破坏进行了分析,在该风险的最优控制路径上找出了不同层次人员的人为失误,并对人为失误提出了相应的控制措施;通过与常规方法的比较,表明所建模型既重视了组织和个人因素的影响,又兼顾了风险控制的经济性和安全性。  相似文献   
249.
根据交通部统一部署,结合上海市在新出台的GB5768—2009指导下进行高速公路相关标志更换工程的设计工作,通过对比,介绍总结了新的高速公路编号与命名、新理念下的高速公路指路系统标志的变更与改进,并对上海市高速公路指路标志存在的问题提出了相关建议。  相似文献   
250.
郑清君  仲生星 《隧道建设》2013,33(5):398-406
以南水北调中线穿黄隧洞工程为依托,在施工过程中,针对黄河漫滩内和富水砂层中超深灰浆墙、超深圆形地下连续墙、超深圆形竖井、超深端头加固施工和薄壁环锚预应力内衬施工等施工技术难点,通过分析、研究和试验摸索,采用了灰浆墙泵送置换法、国内最深地下连续墙施工、竖井水下开挖施工、端头受到干扰后二次加固施工、环锚预应力内衬结构施工等技术,施工实践中应用良好,保证了工程的顺利建成。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号