首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   8篇
公路运输   310篇
综合类   44篇
水路运输   296篇
铁路运输   38篇
综合运输   225篇
  2023年   10篇
  2022年   20篇
  2021年   9篇
  2020年   8篇
  2019年   7篇
  2018年   34篇
  2017年   14篇
  2016年   30篇
  2015年   7篇
  2014年   38篇
  2013年   136篇
  2012年   38篇
  2011年   48篇
  2010年   36篇
  2009年   46篇
  2008年   47篇
  2007年   21篇
  2006年   10篇
  2005年   17篇
  2004年   18篇
  2003年   5篇
  2002年   13篇
  2001年   10篇
  2000年   14篇
  1999年   10篇
  1998年   23篇
  1997年   14篇
  1996年   19篇
  1995年   16篇
  1994年   5篇
  1993年   7篇
  1992年   12篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   12篇
  1982年   7篇
  1981年   12篇
  1980年   8篇
  1979年   15篇
  1977年   15篇
  1976年   11篇
  1975年   10篇
  1974年   8篇
  1973年   5篇
排序方式: 共有913条查询结果,搜索用时 15 毫秒
61.
The development of a mathematical model of a limited bandwidth hydro-pneumatic suspension that is incorporated into a vehicle handling model is described. The combined model is used to evaluate a suitable control strategy for eliminating body roll during a cornering manoeuvre. The philosophy behind the roll control strategy has been to use feedback measurements of the body motions which do not compromise the ride control. A study of the influence of the position of the body motion feedback transducer on the effectiveness of the system to reduce the body roll is presented. Non-linear modelling of the suspension components for a 0.8g cornering manoeuvre has revealed performance limitations. Conclusions are drawn as to the effectiveness of the control scheme.  相似文献   
62.
Damper Models for Heavy Vehicle Ride Dynamics   总被引:18,自引:0,他引:18  
A laboratory rig for testing hydraulic dampers using the 'hardware-in-the-loop' method is described, and the accuracy of the test method is investigated. A mathematical model of a hydraulic shock absorber is then developed. The model is suitable for vehicle simulations and has seven parameters which can be determined by simple dynamic measurements on a test damper. The shock absorber model is validated under realistic operating conditions using the test rig, and the relative importance of various features of the model on the accuracy of vehicle simulations is investigated.  相似文献   
63.
An Optimal Self-Tuning Controller for an Active Suspension   总被引:27,自引:0,他引:27  
An optimal self-tuning control algorithm is presented for vehicle suspension design. The controller, incorporating a weighting controller, state observer and parameter estimator, is designed according to linear optimal control (LQG) theory. Based on the updated estimates of vehicle parameters and states, and the adapted weighting parameters, the LQG controller provides the optimal set of gains over different operating conditions. The feasibility and effectiveness of the proposed self-tuning system was investigated and proved by simulation studies.  相似文献   
64.
The primary cause of most railroad accidents is vehicle entry into railway level crossings despite warning messages. To identify drivers who violate railway level crossing regulations, vehicle license plate recognition can be applied at railway level crossings. The purpose of this paper is to present an effective method for extracting the license plate region from vehicle images taken at railway level crossings. The method proposed in this paper uses the variation in the gray-level values across the image of a license plate. For license plate region extraction, the character region is first recognized by identifying the character width and the difference between the background region and the character region. The license plate region is then extracted by finding the inter-character distance in the plate region. In addition, the license plate type is identified by the difference in the gray-level value between the background region and the character region. The proposed method is effective in solving the current challenges in extracting the license plate region from the damaged frames of license plates issued for domestic use, including new types of license plates. According to the experimental results, the proposed method yields a high extraction rate of 99.5% for vehicle license plates.  相似文献   
65.
Current vehicle dynamic control systems from simple yaw control to high-end active steering support systems are designed to primarily actuate on the vehicle itself, rather than stimulate the driver to adapt his/her inputs for better vehicle control. The driver though dictates the vehicle’s motion, and centralizing him/her in the control loop is hypothesized to promote safety and driving pleasure. Exploring the above statement, the goal of this study is to develop and evaluate a haptic steering support when driving near the vehicle’s handling limits (Haptic Support Near the Limits; HSNL). The support aims to promote the driver’s perception of the vehicle’s behaviour and handling capacity (the vehicle’s internal model) by providing haptic (torque) cues on the steering wheel. The HSNL has been evaluated in (a) driving simulator tests and (b) tests with a vehicle (Opel Astra G/B) equipped with a variable steering feedback torque system. Drivers attempted to achieve maximum velocity while trying to retain control in a circular skid-pad. In the simulator (a) 25 subjects drove a vehicle model parameterised as the Astra on a dry skid-pad while in (b) 17 subjects drove the real Astra on a wet skid-pad. Both the driving simulator and the real vehicle tests led to the conclusion that the HSNL assisted subjects to drive closer to the designated path while achieving effectively the same speed. With the HSNL the drivers operated the tires in smaller slip angles and hence avoided saturation of the front wheels’ lateral forces and excessive understeer. Finally, the HSNL reduced their mental and physical demand.  相似文献   
66.
Under real-life driving conditions, hilly roads are prevalent. Hilly road profile substantially influences fuel economy (FE) due to large impacts (increase or decrease) on power demand profile. Thus, the utilization of future altitude profile information has large potential to improve FE. In this paper, for optimal energy management of fuel cell hybrid electric vehicles (FCHEV), we investigate how much FE could potentially be improved when future altitude profile information is available. In particular, the simulation results are analyzed to justify the reason for this potential improvement and to identify which characteristics of hilly roads leads to large FE improvements. First of all, four statistical parameters are defined to characterize hilly roads: mean value, standard deviation (STD), distance interval (DI), and total distance. Then, several types of virtual hilly roads are generated based on various parameter combinations. In order to evaluate the potential FE improvement two energy management strategies (EMSs) are utilized: the first is Dynamic Programming, which evaluates the globally optimal FE when future hilly road information is available; the other is the Equivalent Consumption Minimization Strategy (ECMS) with adaptive equivalent factor for charge-sustenance, which represents the baseline EMS when future hilly road information is not available. The results show that downhill roads have much larger potential than uphill roads do for FE improvements when the future altitude profile is properly used for EMS. Furthermore, if the battery capacity is not large enough to handle the difference in potential energy, future hilly road information is more important to prevent violations of the maximum state-of-charge bound.  相似文献   
67.
Engineering bus design requires testing of bus structures prototypes in order to guarantee a certain level of strength and an appropriate static and dynamic behavior of the bus superstructure when exposed to road loads. However, experimental testing of real bus structures is very expensive as it requires expensive resources and space. If testing is done on a scale bus model the previous required expenses are considerably reduced. Therefore, a novel methodology based on dimensional analysis applied to bus structure prediction to evaluate the bus structure static and dynamic performance is proposed. The static performance is evaluated attending to torsion stiffness and the dynamic in terms of the natural vibration frequencies and rollover threshold. A scale bus has been manufactured and dimensionless parameters have been defined in order to project the results obtained in the scale bus model to a larger model. Validation of the proposed methodology has been carried out under experimental and finite element analysis.  相似文献   
68.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   
69.
Optimal control is generally not possible without information about the future coming up, and it is not easy to obtain an optimal solution even though the information is given a priori. In this paper, a control concept based on Pontryagin’s Minimum Principle (PMP) is introduced as an efficient solution to generate an optimal control trajectory for Hybrid Electric Vehicles (HVEs) when the performance of the vehicles is evaluated on scheduled driving cycles at a simulation level. The main idea of the control concept is to minimize Hamiltonian, which is interpreted as equivalent fuel consumption, and the Hamiltonian is characterized by a co-state, which is interpreted as a weighting factor for the electrical usage. A key aspect of the control problem is that an appropriate initial condition of the co-state is required to satisfy the boundary condition of the problem. In this study, techniques to calculate the Hamiltonian in different hybrid configurations are introduced, and a methodology to look for the initial condition of the co-state is studied, so that the controller is able to realize a desired State Of Charge (SOC) trajectory. To address the issue, we utilize a shooting method with multiple initial conditions based on the concept of the Newton-Raphson method, and all these techniques are realized in a backward looking simulator. The simulation results show that the PMP-based control is a very efficient approach to produce the optimal control trajectory, and the performance is compared to the optimal solution solved by Dynamic Programming (DP).  相似文献   
70.
This paper presents a method to assess of fatigue strength for resistance spot welded joints, which incorporates welding residual stress effects. To achieve this, first, a non-linear finite element analysis (FEA) was performed to simulate the spot-welding process. To validate the FEA results, the numerically calculated welding residual stresses of spot welds were then compared with experimental results measured by X-ray diffraction method. The residual stress distributions showed good agreement between calculations and experiments. To evaluate the effects of welding residual stress on the fatigue design criterion of resistance spot welded joints subjected to cross-tension load, the stress amplitude (σa-res) taking into account welding residual stress at a spot weld was proposed based on a modified Goodman equation incorporating the residual stress effect. Using the stress amplitude σa-res at the nugget edge of a spot weld, the ΔP ? Nf relations obtained as the fatigue test results for spot welded joints were systematically rearranged to the σa-res ? Nf relation. It was found that the proposed stress amplitude (σa-res) provides more reasonable and accurate fatigue design criterion of spot welded joints subjected to cross-tension load.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号