首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   8篇
公路运输   310篇
综合类   44篇
水路运输   296篇
铁路运输   38篇
综合运输   225篇
  2023年   10篇
  2022年   20篇
  2021年   9篇
  2020年   8篇
  2019年   7篇
  2018年   34篇
  2017年   14篇
  2016年   30篇
  2015年   7篇
  2014年   38篇
  2013年   136篇
  2012年   38篇
  2011年   48篇
  2010年   36篇
  2009年   46篇
  2008年   47篇
  2007年   21篇
  2006年   10篇
  2005年   17篇
  2004年   18篇
  2003年   5篇
  2002年   13篇
  2001年   10篇
  2000年   14篇
  1999年   10篇
  1998年   23篇
  1997年   14篇
  1996年   19篇
  1995年   16篇
  1994年   5篇
  1993年   7篇
  1992年   12篇
  1991年   8篇
  1990年   11篇
  1989年   8篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   9篇
  1983年   12篇
  1982年   7篇
  1981年   12篇
  1980年   8篇
  1979年   15篇
  1977年   15篇
  1976年   11篇
  1975年   10篇
  1974年   8篇
  1973年   5篇
排序方式: 共有913条查询结果,搜索用时 15 毫秒
71.
Under real-life driving conditions, hilly roads are prevalent. Hilly road profile substantially influences fuel economy (FE) due to large impacts (increase or decrease) on power demand profile. Thus, the utilization of future altitude profile information has large potential to improve FE. In this paper, for optimal energy management of fuel cell hybrid electric vehicles (FCHEV), we investigate how much FE could potentially be improved when future altitude profile information is available. In particular, the simulation results are analyzed to justify the reason for this potential improvement and to identify which characteristics of hilly roads leads to large FE improvements. First of all, four statistical parameters are defined to characterize hilly roads: mean value, standard deviation (STD), distance interval (DI), and total distance. Then, several types of virtual hilly roads are generated based on various parameter combinations. In order to evaluate the potential FE improvement two energy management strategies (EMSs) are utilized: the first is Dynamic Programming, which evaluates the globally optimal FE when future hilly road information is available; the other is the Equivalent Consumption Minimization Strategy (ECMS) with adaptive equivalent factor for charge-sustenance, which represents the baseline EMS when future hilly road information is not available. The results show that downhill roads have much larger potential than uphill roads do for FE improvements when the future altitude profile is properly used for EMS. Furthermore, if the battery capacity is not large enough to handle the difference in potential energy, future hilly road information is more important to prevent violations of the maximum state-of-charge bound.  相似文献   
72.
Engineering bus design requires testing of bus structures prototypes in order to guarantee a certain level of strength and an appropriate static and dynamic behavior of the bus superstructure when exposed to road loads. However, experimental testing of real bus structures is very expensive as it requires expensive resources and space. If testing is done on a scale bus model the previous required expenses are considerably reduced. Therefore, a novel methodology based on dimensional analysis applied to bus structure prediction to evaluate the bus structure static and dynamic performance is proposed. The static performance is evaluated attending to torsion stiffness and the dynamic in terms of the natural vibration frequencies and rollover threshold. A scale bus has been manufactured and dimensionless parameters have been defined in order to project the results obtained in the scale bus model to a larger model. Validation of the proposed methodology has been carried out under experimental and finite element analysis.  相似文献   
73.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   
74.
Optimal control is generally not possible without information about the future coming up, and it is not easy to obtain an optimal solution even though the information is given a priori. In this paper, a control concept based on Pontryagin’s Minimum Principle (PMP) is introduced as an efficient solution to generate an optimal control trajectory for Hybrid Electric Vehicles (HVEs) when the performance of the vehicles is evaluated on scheduled driving cycles at a simulation level. The main idea of the control concept is to minimize Hamiltonian, which is interpreted as equivalent fuel consumption, and the Hamiltonian is characterized by a co-state, which is interpreted as a weighting factor for the electrical usage. A key aspect of the control problem is that an appropriate initial condition of the co-state is required to satisfy the boundary condition of the problem. In this study, techniques to calculate the Hamiltonian in different hybrid configurations are introduced, and a methodology to look for the initial condition of the co-state is studied, so that the controller is able to realize a desired State Of Charge (SOC) trajectory. To address the issue, we utilize a shooting method with multiple initial conditions based on the concept of the Newton-Raphson method, and all these techniques are realized in a backward looking simulator. The simulation results show that the PMP-based control is a very efficient approach to produce the optimal control trajectory, and the performance is compared to the optimal solution solved by Dynamic Programming (DP).  相似文献   
75.
This paper presents a method to assess of fatigue strength for resistance spot welded joints, which incorporates welding residual stress effects. To achieve this, first, a non-linear finite element analysis (FEA) was performed to simulate the spot-welding process. To validate the FEA results, the numerically calculated welding residual stresses of spot welds were then compared with experimental results measured by X-ray diffraction method. The residual stress distributions showed good agreement between calculations and experiments. To evaluate the effects of welding residual stress on the fatigue design criterion of resistance spot welded joints subjected to cross-tension load, the stress amplitude (σa-res) taking into account welding residual stress at a spot weld was proposed based on a modified Goodman equation incorporating the residual stress effect. Using the stress amplitude σa-res at the nugget edge of a spot weld, the ΔP ? Nf relations obtained as the fatigue test results for spot welded joints were systematically rearranged to the σa-res ? Nf relation. It was found that the proposed stress amplitude (σa-res) provides more reasonable and accurate fatigue design criterion of spot welded joints subjected to cross-tension load.  相似文献   
76.
Numerical simulations of IC engines are of high interest for automotive engineers worldwide. The simulation models should be as fast as possible, low-computational effort and predictive tool. The correct prediction of turbulence level inside the combustion chamber of spark ignition engines is the most important factor influencing to the engine working cycle. This paper presents a development of the k-ε turbulence model applied to the commercial cycle-simulation software with the high emphasis on the intake part. The validation was performed on two engine geometries with the variation of engine speed and load comparing the cycle-simulation results of the turbulent kinetic energy and in-cylinder temperature with 3-D CFD results. In order to apply the cycle-simulation turbulence model for the simulation of entire engine map, the parameterization model of turbulence constants was proposed. The parameterized turbulence model was optimized using NLPQL optimization algorithm where the single set of turbulence model parameters for each engine was found. A good agreement of the turbulent kinetic energy during the expansion was achieved when the turbulence affects the flame front propagation and combustion rate as well.  相似文献   
77.
A modified thermostatic control strategy is applied to the powertrain control of a parallel mild hybrid electric vehicle (HEV) to improve fuel economy. This strategy can improve the fuel economy of a parallel mild HEV by operating internal combustion engine (ICE) in a high-efficiency region. Thus, in this study, experiments of a parallel mild HEV were conducted to analyze the characteristics of the hybrid electric powertrain and a numerical model is developed for the vehicle. Based on the results, the thermostatic control strategy was modified and applied to the vehicle model. Also, battery protection logic by using electrochemical battery model is applied because the active usage of battery by thermostatic control strategy can damage the battery. The simulation results of the vehicle under urban driving conditions show that the thermostatic control strategy can improve the vehicle’s fuel economy by 3.7 % compared with that of the conventional strategy. The results also suggest that the trade-off between the fuel economy improvement by efficient ICE operation and the battery life reduction by active battery usage should be carefully investigated when a thermostatic control strategy is applied to a parallel mild HEV.  相似文献   
78.
A speed control algorithm for an ACC (Adaptive Cruise Control) system for curved roads is proposed based on driver behavior characteristics. As the foundation of this research, a driver speed model for curved roads is developed using a series of experimental data regarding driver behavior. To adapt the model to each driver’s individual curve speed behavior, the coefficients of the model are identified in real time from the data sequences collected during drivers’ manual operation stage by a self-learning algorithm based on a Recursive Least-Square (RLS) method with a forgetting factor. Using this algorithm, the parameters of the driver model can be identified from the data collected in the manual operation phase, and the identification results are applied during the ACC automatic control phase. Based on the developed model, the ACC speed control algorithm is modified to provide each individual driver with a customized speed profile for the scenario of a curved road with no car ahead. Tests verify the applicability of the modified system.  相似文献   
79.
80.
A regional railroad network is presented to evaluate the system's response to increased coal traffic. An optimal, multimodal, coal-shipping pattern is developed for the study region to minimize total costs and to efficiently use the existing network. A two-stage, general model allocates resources among demands and then assigns flows to the network according to efficiency criteria. The model is sufficiently general to permit modification for specific needs, assumptions and data. Government agencies and industries can apply the model in resource allocation decisions and transportation policy analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号