首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   604篇
  免费   45篇
公路运输   194篇
综合类   175篇
水路运输   137篇
铁路运输   123篇
综合运输   20篇
  2024年   4篇
  2023年   2篇
  2022年   25篇
  2021年   27篇
  2020年   31篇
  2019年   8篇
  2018年   16篇
  2017年   9篇
  2016年   10篇
  2015年   28篇
  2014年   29篇
  2013年   50篇
  2012年   55篇
  2011年   59篇
  2010年   42篇
  2009年   38篇
  2008年   47篇
  2007年   36篇
  2006年   46篇
  2005年   44篇
  2004年   11篇
  2003年   8篇
  2002年   6篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
641.
应用流体分析软件Fluent和发动机模拟软件GT-Power分别对某型号空滤器进气系统的气动性能和消声性能进行了模拟计算。分别研究了进出气管的管径大小和插入长度对空滤器进气系统的气动性能和消声性能的影响。研究结果表明,减小空滤器的进出气管直径均能改善空气滤清器进气系统的消声性能,但其气动性能有所恶化,而且通过比较发现,进气管的管径大小比出气管对空滤器的气动性能和消声性能影响更大;进出气管的插入对于此种结构的空滤器进气系统的气动和消声性能并无改善。文章最后根据空滤器消声性能的不足和发动机进气口的阶次噪声曲线,设计了一个谐振腔,改善了其噪声性能。  相似文献   
642.
三轴试验是确定土的抗剪强度的主要方法,试样尺寸是影响三轴试验结果的重要因素之一.粗粒土的三轴试验需要采用大尺寸的试样进行,相应需要采用大尺寸试验装置及更多的制样用土.与大尺寸三轴试验相比,采用小尺寸三轴压力室,所需的试样较小,制样用土较少,且小尺寸三轴试验过程更快,试验成本更低.但采用小尺寸试样对粗粒土进行三轴试验时,往往得到偏小的抗剪强度参数,导致实际工程设计过于保守而不经济.为了降低试验成本,可以采用小尺寸试样进行试验,通过对试验结果进行修正来获得大尺寸试样试验结果,进而使工程设计具有良好的经济性.针对以上问题,本文对比研究了不良级配砾质砂混合物在采用去粗法前后制样试验所得的抗剪强度,提出了采用不同尺寸试样进行试验时对试验结果进行修正的方法及计算公式.  相似文献   
643.
采用系统工程学的层次分析方法建立新建轨道沿线地面公交调整方案的评价指标体系,结合Matlab程序精确有效地确定各指标权重,并进行一致性检验,使评价更加符合实际。  相似文献   
644.
康亮 《交通标准化》2011,(13):92-94
为更加合理地使用乳化沥青对旧路进行冷再生,对乳化沥青冷再生混合料的材料组成进行研究,试验结果表明,本文提出的配合比设计方法对乳化沥青冷再生混合料是适用的。  相似文献   
645.
以北京铁路地下直径线盾构区间隧道工程为背景,对泥水盾构施工中自动采集的数据进行研究和分析,研发了泥水盾构施工实时管理信息系统。本系统能够对盾构施工过程进行实时监控,提供可视化图形数据分析界面,并对盾构施工中的耗材进行统计分析,既便于分析盾构施工的全过程及其可能出现的各种问题,又可以对盾构施工成本和质量进行控制,还能形象地显示工程进度。本系统通过调试和试用,能够实现信息反馈和盾构的施工监控,便于用户对盾构施工进行有效地信息分析、合理地施工组织和管理。  相似文献   
646.
针对现有含有地下管道的沥青混凝土路面的病害现象,应用有限元方法,建立了道路结构力学计算模型,研究分析道路回填材料的回弹模量、管道埋深及沟槽形式等因素变化下的力学行为,得出地下管道的存在对路面结构影响受力分布规律与范围,并和调查路面的病害情况进行对比,为沥青混凝土路面的结构设计与现场施工及改善路面的结构性能提供了理论参考。  相似文献   
647.
港口交通资源承载力预测预警模型   总被引:2,自引:1,他引:2  
根据航道交通容量计算方法,建立了航道资源静态承载力模型,基于锚地规模计算方法和基准判定参数,建立了锚地资源承载力分级模型。应用排队理论,将港口码头泊位的服务强度与航道资源、锚地资源的承载力模型相融合,构建了港口交通资源承载力综合预测预警模型,并以中国南方某港口进行实例验证。计算结果表明:应用预测预警模型,2008年与2010年的航道资源承载力指数分别为0.405与0.608,锚地资源承载力综合指数分别为1.489与0.600,2008年的港口码头服务强度为0.565,计算结果与事实相符;按照货物吞吐量的增长速度,预计到2015年,最小、最大航道资源承载力指数分别为0.593与0.796,预计到2020年,最小、最大航道资源承载力指数分别为0.685与0.944;基于现有锚地资源,预计到2015年,水深小于5m的最大锚地资源承载力指数为0.177,水深在5~10m的最大锚地资源承载力指数为1.037,水深大于10m的最大锚地资源承载力指数为1.294,预计到2020年,水深小于5m的最大锚地资源承载力指数为0.210,水深在5~10m的最大锚地资源承载力指数为1.231,水深大于10m的最大锚地资源承载力指数为1.535;预计到2015年,港口码头的最小泊位服务强度为0.858,预计到2020年,港口码头的最小泊位服务强度为0.994。  相似文献   
648.
针对西安地铁5号线近距离下穿地铁2号线的工程实际情况, 分析了既有地铁线路的安全判断准则、正常使用要求和服役状态, 选取弯矩、曲率半径、容许应力、容许切应变与轨道变形作为新建地铁隧道下穿时既有地铁线路沉降标准的控制因素, 构建了既有地铁线路的力学模型, 推导了既有地铁线路允许沉降计算公式, 确定了黄土地区新建地铁隧道下穿时既有地铁线路的沉降控制标准。分析结果表明: 以既有地铁线路的弯矩、曲率半径、容许应力、轨道变形与容许切应变依次作为控制因素时既有地铁线路允许沉降分别为22.40、20.85、48.14、20.23、21.06mm, 其他地区下穿工程经验允许沉降与国内相关规范允许沉降为20mm, 因此, 最不利控制因素即轨道变形的允许沉降接近既有相关允许沉降, 建议黄土地区新建地铁隧道下穿时既有地铁线路沉降控制基准为20mm; 对既有地铁线路沉降控制标准进行了分级管理, 选取沉降控制基准的100%、80%和60%分别作为既有地铁线路的控制值(20mm)、报警值(16mm) 与预警值(12mm), 提出了下穿时既有地铁线路的预警体系; 评价了新建地铁隧道下穿时既有地铁线路沉降的安全级别, 并给出了相应的处置措施, 安全级别为Ⅰ级, 即沉降不大于12mm时, 新建隧道正常施工并做好监测, 安全级别为Ⅱ级, 即沉降为(12, 16]mm时, 加强监测并实时反馈, 安全级别为Ⅲ级, 即沉降为(16, 20]mm时, 停止施工, 并启动应急预案, 安全级别为Ⅳ级, 即沉降大于20mm时, 达到破坏级别, 不允许施工。   相似文献   
649.
随着赣州市社会经济的不断发展以及沿江开发的不断进行,跨江交通压力越来越大,楼梯岭大桥的建设是两岸发展的必然要求。然而随着人民精神需求的不断增长,交通功能已经不再是唯一要求,更要考虑景观因素以及人与自然和谐发展。从项目背景、功能定位、交通预测、总体设计、关键节点等方面,对楼梯岭大桥工程进行介绍,为跨江通道的设计提供工程经验和设计参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号