全文获取类型
收费全文 | 2431篇 |
免费 | 9篇 |
专业分类
公路运输 | 868篇 |
综合类 | 98篇 |
水路运输 | 714篇 |
铁路运输 | 66篇 |
综合运输 | 694篇 |
出版年
2023年 | 13篇 |
2022年 | 37篇 |
2021年 | 21篇 |
2020年 | 24篇 |
2019年 | 23篇 |
2018年 | 64篇 |
2017年 | 73篇 |
2016年 | 128篇 |
2015年 | 36篇 |
2014年 | 105篇 |
2013年 | 369篇 |
2012年 | 118篇 |
2011年 | 138篇 |
2010年 | 119篇 |
2009年 | 125篇 |
2008年 | 126篇 |
2007年 | 81篇 |
2006年 | 59篇 |
2005年 | 53篇 |
2004年 | 38篇 |
2003年 | 28篇 |
2002年 | 35篇 |
2001年 | 37篇 |
2000年 | 53篇 |
1999年 | 33篇 |
1998年 | 32篇 |
1997年 | 37篇 |
1996年 | 43篇 |
1995年 | 56篇 |
1994年 | 16篇 |
1993年 | 36篇 |
1992年 | 25篇 |
1991年 | 23篇 |
1990年 | 13篇 |
1989年 | 7篇 |
1988年 | 15篇 |
1987年 | 15篇 |
1986年 | 17篇 |
1985年 | 17篇 |
1984年 | 15篇 |
1983年 | 12篇 |
1982年 | 12篇 |
1981年 | 11篇 |
1980年 | 17篇 |
1979年 | 20篇 |
1978年 | 14篇 |
1977年 | 10篇 |
1976年 | 6篇 |
1975年 | 16篇 |
1974年 | 9篇 |
排序方式: 共有2440条查询结果,搜索用时 15 毫秒
71.
M. Ticã G. Dobre V. Mateescu G. Virzi-Mariotti 《International Journal of Automotive Technology》2014,15(6):885-891
The research is carried out to improve passenger’s comfort to increase the vehicles stability in dynamic conditions. The literature available in the automotive engineering considers different topics for studying suspensions. An example represents mechanisms structure and analysis (synthesis, kinematics, and dynamics) under various operating conditions. These aspects have been approached before analytically, numerical. The current paper studies the influence of the lateral force on the contact patch of the wheel and the corresponding variations of vehicle stability parameters, such as camber angle and wheel rear track. The study is performed for a newer innovative rear suspensions mechanism which does not have a wheel track and camber angle variation, relative to the chassis, when the suspension components was considered rigid. A numerical solution is obtained through a virtual model on several commercial codes: MSC Adams, Patran, Nastran. Concerning the analysed parametes, their variation increases as the applied force is increased. Moreover, the largest variation corresponds to the case were elastic bushings and deformable links are considered. 相似文献
72.
Node-based scheduling method for easy migration from CAN to FlexRay in in-vehicle networking systems
As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) are essential for the convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on chassis networking systems that require increased network capacity and real-time capabilities. FlexRay was developed to replace CAN protocol in chassis networking systems, to remedy the shortage of transmission capacity and unsatisfactory real-time transmission delay of conventional CAN. However, FlexRay network systems require a complex scheduling method, which is a barrier to their implementation as chassis networking systems. In particular, if we want to migrate from a CAN network to a FlexRay network using the well-defined CAN message database, which has been specifically constructed for chassis networking systems by automotive vendors, a new type of scheduling method is necessary to reduce scheduling efforts during the software development process. This paper presents a node-based scheduling method for easy migration from a CAN network to a FlexRay network system. To demonstrate the feasibility of the technique, its performance is evaluated in terms of various software complexity indices. 相似文献
73.
This research attempted to analyze nanoparticles and other harmful exhaust emissions in accordance with injection strategies and air-fuel ratio (AFR) changes for small diesel engines. The emission characteristics were analyzed in the medium-speed condition, which is the main driving range of a diesel engine. In the case of particulate matter (PM), the number of particles was measured, analyzed, and compared to identify the correlation and emission characteristics of nanoparticles by using a dilution device and condensation particle counter (CPC), which are international standards for particle measurement recommended by the Particulate Measurement Programme (PMP). The engine torque tended to be reduced as pilot injections were added, and the torque was increased by the increased boost pressure, but reduced by the exhaust pressure increase in a part of the low-load range. The number of nanoparticles was not influenced greatly by the change in AFR, but the reduction effect on the PM weight was great depending on the boost pressure increase. In addition, the number of nanoparticles tended to increase as the fuel injection timing became closer to TDC in all conditions, and its difference became larger with an increase in AFR. In addition, in the case of the pilot injection, nanoparticle emission showed similar characteristics depending on the main injection timing, but it was increased by advanced injection timing when performing the main injection only, and the number of the nanoparticles increased as pilot injections were added. Last, the optimal conditions for EMS calibration were analyzed by selecting the conditions of torque reduction and NOx increase within 5 % from all of the engine operating conditions; optimized conditions are presented. 相似文献
74.
Travel time reliability, an essential factor in traveler route and departure time decisions, serves as an important quality of service measure for dynamic transportation systems. This article investigates a fundamental problem of quantifying travel time variability from its root sources: stochastic capacity and demand variations that follow commonly used log-normal distributions. A volume-to-capacity ratio-based travel time function and a point queue model are used to demonstrate how day-to-day travel time variability can be explained from the underlying demand and capacity variations. One important finding is that closed-form solutions can be derived to formulate travel time variations as a function of random demand/capacity distributions, but there are certain cases in which a closed-form expression does not exist and numerical approximation methods are required. This article also uses probabilistic capacity reduction information to estimate time-dependent travel time variability distributions under conditions of non-recurring traffic congestion. The proposed models provide theoretically rigorous and practically useful tools for understanding the causes of travel time unreliability and evaluating the system-wide benefit of reducing demand and capacity variability. 相似文献
75.
V. Pracny M. Meywerk A. Lion 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2007,45(1):1-14
The method of numerical multi-body simulation is an often used and well-understood development tool in the automotive industry. In order to reproduce the ride comfort or handling behaviour of vehicles, mathematical models have to be built up. To achieve accurate simulation results, highly detailed component models are required. However, the formulation of appropriate physically-based model equations of complex automotive components (e.g. air springs, shock absorbers, rubber bearings, tyres, etc.) can be very difficult. To handle this, empirical modelling methods have been developed. Simple algebraic equations are used to describe complex system behaviour. This simplification is very effective, although it largely ignores the natural laws of mechanics and thermodynamics but is still capable to predict the component response. This article illustrates how to take advantage of this approach in numerical simulations. We describe the development of a hybrid automotive shock absorber model based on both spline and neural network (NN) approaches. By combining these different approaches, an accurate model is achieved without loss of variability. Non-isothermal laboratory force-displacement measurements of an automotive shock absorber are being used to estimate the parameters of the NN. As shown, the model replicates the measured data with sufficient accuracy, especially the hysteresis. Finally, we present a set of quarter-car simulations with a built-in hybrid NN shock absorber. 相似文献
76.
Y. Q. Sun S. Simson 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2007,45(2):113-132
A nonlinear wagon-track model on curved track has been developed to characterize rail corrugation formation due to self-excitation of the wheel-rail stick-slip process. In this model, wagon movements were described using up to 78 degrees of freedom (DOFs) to model a three-piece freight bogie. Innovatively, the wheelset movements are described using nine DOFs, including torsional and bending modes about the longitudinal and vertical directions. The track modelling is considered as a one-layer structure (two rail beams on discrete spring and damper elements). The wheel sliding after creepage saturation is considered in the wheel-rail interface modelling. Simulation of a case study shows that the frequencies of the wheel stick-slip process are composed of the basic frequency, which might come from the combined effect of sleeper-passing frequency and one-third of the combined torsional and bending frequency of the wheelset, and the double and triple basic frequencies, which form the wavelengths of rail corrugation at different situations. 相似文献
77.
J. R. Serrano F. J. Arnau V. Dolz A. Tiseira M. Lejeune N. Auffret 《International Journal of Automotive Technology》2008,9(3):277-288
This article presents a two-stage turbocharged heavy-duty diesel (HDD) engine designed to fulfil the US2007 anti-pollution directive. This directive imposes very restrictive limits on the NOx and particle emissions of HDD engines. In this work, the possibility of combining particle traps in the exhaust line to reduce soot emissions with very high EGR rates to reduce NOx emissions is considered. This new generation engine implements two-stage turbocharging in order to improve the bsfc when the engine is working on steady conditions as well as to optimize the engine transient response. After carrying out the tests, the results were analyzed and the engine settings were adjusted to maximise its behaviour and minimise pollutant emissions. NOx and soot emission peaks were also analyzed at engine transient conditions in order to keep them under certain levels, and thus maintain the overall pollutant emissions to a level that is as low as possible. In summary, a double-stage turbocharging configuration can greatly improve engine driveability (between 23% and 36% depending on engine speed), while reducing NOx emissions during transient evolution without increasing opacity peaks beyond the stated limits. 相似文献
78.
This paper describes the development of an optimal design process for a steering column system and supporting system. A design
guide is proposed at the initial concept stage of the development process to obtain sufficient stiffness of the steering system
while reducing the idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, where vibration
modes among the systems are separated by applying a vibration mode map at the initial stage of the design process. This study
also provides design guidelines for an optimal dynamic damper system using a CAE (computer aided engineering) analysis. The
damper FE (finite element) model is added to the vehicle model to analyze the relation between the frequency and the sensitivity
of the steering column system. This analysis methodology makes it possible to achieve target performance in the early design
stage and reduction of damper tuning activity after the proto car test stage. Through the proposed steering column system
development process, a lightweight vehicle with high stiffness is possible prior to the proto build stage. Furthermore, the
improved process is expected to contribute to reducing the overall development period and the number of proto car tests necessary
to achieve the desired steering system performance. 相似文献
79.
Desired yaw rate and steering control method during cornering for a six-wheeled vehicle 总被引:1,自引:0,他引:1
S. -J. An K. Yi G. Jung K. I. Lee Y. -W. Kim 《International Journal of Automotive Technology》2008,9(2):173-181
This paper proposes a steering control method based on optimal control theory to improve the maneuverability of a six-wheeled
vehicle during cornering. The six-wheeled vehicle is believed to have better performance than a four-wheeled vehicle in terms
of its capability for crossing obstacles, off-road maneuvering and fail-safe handling when one or two of the tires are punctured.
Although many methods to improve the four-wheeled vehicle’s lateral stability have been studied and developed, there have
only been a few studies on the six-wheeled vehicle’s lateral stability. Some studies of the six-wheeled vehicle have been
reported recently, but they are related to the desired yaw rate of a four-wheeled vehicle to control the six-wheeled vehicle’s
maneuvering during corning. In this paper, the sideslip angle and yaw rate are controlled to improve the maneuverability during
cornering by independent control of the steering angles of the six wheels. The desired yaw rate that is suitable for a six-wheeled
vehicle is proposed as a control target. In addition, a scaled-down vehicle with six drive motors and six steering motors
that can be controlled independently is designed. The performance of the proposed control methods is verified using a full
model vehicle simulation and scaled-down vehicle experiment. 相似文献
80.
K. M. Saqr M. K. Mansour M. N. Musa 《International Journal of Automotive Technology》2008,9(2):155-160
The potential for thermoelectric power generation (via waste heat recovery onboard automobiles) to displace alternators and/or
provide additional charging to a vehicle battery pack has increased with recent advances in thermoelectric material processing.
In gasoline fueled vehicles (GFVs), about 40% of fuel energy is wasted in exhaust heat, while a smaller amount of energy (30%)
is ejected through the engine coolant. Therefore, exhaust-based thermoelectric generators (ETEG) have been a focus for GFV
applications since the late 1980s. The conversion efficiency of modern thermoelectric materials has increased more than three-fold
in the last two decades; however, disputes as to the thermal design of ETEG systems has kept their overall efficiency at limited
and insufficient values. There are many challenges in the thermal design of ETEG systems, such as increasing the efficiency
of the heat exchangers (hot box and cold plate), maintaining a sufficient temperature difference across the thermoelectric
modules during different operating conditions, and reducing thermal losses through the system as a whole. This paper focuses
on a review of the main aspects of thermal design of ETEG systems through various investigations performed over the past twenty
years. This paper is organized as follows: first, the construction of a typical ETEG is described. The heat balance and efficiency
of ETEG are then discussed. Then, the third section of this paper emphasizes the main objectives and challenges for designing
efficient ETEG systems. Finally, a review of ETEG research activities over the last twenty years is presented to focus on
methods used by the research community to address such challenges. 相似文献