首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8046篇
  免费   101篇
公路运输   1795篇
综合类   589篇
水路运输   2555篇
铁路运输   767篇
综合运输   2441篇
  2022年   114篇
  2021年   57篇
  2020年   45篇
  2019年   82篇
  2018年   202篇
  2017年   122篇
  2016年   172篇
  2015年   96篇
  2014年   241篇
  2013年   1225篇
  2012年   330篇
  2011年   417篇
  2010年   254篇
  2009年   374篇
  2008年   321篇
  2007年   274篇
  2006年   230篇
  2005年   269篇
  2004年   292篇
  2003年   180篇
  2002年   148篇
  2001年   132篇
  2000年   139篇
  1999年   100篇
  1998年   129篇
  1997年   112篇
  1996年   138篇
  1995年   149篇
  1994年   84篇
  1993年   189篇
  1992年   160篇
  1991年   77篇
  1990年   83篇
  1989年   57篇
  1988年   74篇
  1987年   65篇
  1986年   59篇
  1985年   77篇
  1984年   73篇
  1983年   73篇
  1982年   73篇
  1981年   95篇
  1980年   68篇
  1979年   91篇
  1978年   56篇
  1977年   69篇
  1976年   53篇
  1975年   65篇
  1974年   50篇
  1973年   45篇
排序方式: 共有8147条查询结果,搜索用时 331 毫秒
911.
The first part of this paper presented the required statistics and stochastic models for reliability analysis of the fatigue fracture of welded plate joints. This present Part 2 suggests a probabilistic damage tolerance supplement to the design SN curves for welded joints. The goal is to provide the practising engineer with simple tools that predict the reliability against fatigue fracture during service life. The impact of the chosen fatigue design factors (FDF) and the uncertainty in the applied stresses is revealed. The effect of an in-service inspection programme is also predicted. The results are presented as dimensionless matrices and suggested for use in support of decision-making at the design stage, without any advanced fracture mechanics modelling and stochastic simulation. One important advantage of this format is that the probability levels are presented regardless of actual weld class and target service life (TSL). This is obtained by introducing the FDF as a key parameter to the results. This parameter is defined as the ratio of predicted fatigue life over TSL. FDF is always calculated in the SN approach which is mandatory in fatigue life prediction. Various welded details (classes) will have the same reliability level for the same FDF. This is true at the end of TSL and at earlier stages, i.e. fractions of TSL. The absolute value of TSL is immaterial for a given FDF. In the case of in-service inspection, the inspection interval is also given without dimensions as a fraction of TSL.

Only the influence of future scheduled inspections is treated. Updating based on actual inspection results is not included as the scope of work is inspection planning at the design stage. Results for some frequent cases occurring in practice are readily derived and presented.  相似文献   

912.
New Large Aircraft (NLA) are new aircraft developments larger than any existing aircraft. The NLA's higher seat capacity will significantly impact passenger terminal design and operations. This paper focuses on the issues regarding the departure lounge. Deterministic queuing theory is used to determine the size and seating configuration of the lounge, as well as to decide whether a second level should be built to accommodate the increase in the number of passengers. The paper also discusses the use of the satellite section of a pier‐satellite terminal as a single lounge for the NLA. Spreadsheets are used to implement the analyses.  相似文献   
913.
Air suspension systems have been implemented in various commercial vehicles, such as buses and special purpose trucks, because of the comfortable ride and easy height control. An evaluation of the durability of vehicle parts has been required for service life and safety starting in the early stages of design. The cyclic load applied to the vehicle can cause fatigue failure of parts, such as the suspension frame. This paper presents a method to predict the fatigue life of the suspension frame at the design stage of the air suspension system used in a heavy-duty vehicle. To estimate the fatigue life using the SN method, the Dynamic Stress Time History (DSTH) is necessary for the part of interest. DSTH can be obtained from the results of the flexible body dynamic analysis using the Belgian road simulation and the Modal Stress Recovery (MSR) method. Furthermore, the reliability of the predicted fatigue life can be evaluated by considering the variations in material properties. The probability and distribution of the expected life cycle can be obtained using experimental design with a minimum number of simulations. The advantage of using statistical methods to evaluate the life cycle is the ability to predict replacement time and the probability of failure of mass-produced parts. This paper proposes a rapid and simple method that can be effectively applied to the design of vehicle parts.  相似文献   
914.
The characteristics of auto-ignition and micro-explosion behaviors of one-dimensional arrays of fuel droplets suspended in a chamber with high surrounding temperature were investigated experimentally with various droplet spacings, numbers of droplet and surrounding temperatures. The fuels used were pure n-decane and emulsified n-decane with varied water contents ranging from 10 to 30%. All experiments were performed under atmospheric conditions with high surrounding temperatures. An imaging technique using a high-speed camera was adopted to measure ignition delay, flame lifetime, and flame spread speed. The camera was also used to observe micro-explosion behaviors. As the droplet array spacing increased, the ignition delay also increased, regardless of water content. However, the lifetime of the droplet array decreased as the droplet spacing increased. The micro-explosion starting time remained unchanged regardless of the number of the droplets or the droplet spacing; however, it tended to be delayed slightly as the water percentage and droplet spacing increased.  相似文献   
915.
This study summarizes engine speed and load effects on HC species emissions from premixed charge compression ignition (PCI) and conventional diesel combustion, and it evaluates diesel oxidation catalyst (DOC) formulations on a gas flow reactor for the purpose of diesel particulate filter regeneration or lean NOx trap desulfation. HC emissions are sampled simultaneously by a Tedlar bag for light HC species and by a Tenax TA™ adsorption trap for semi-volatile HC species, and they are analyzed by gas chromatography with a flame ionization detector. The bulk temperature and residence time during combustion are key parameters that are important for understanding the effects of speed and load on engine-out HC emissions. The degree of post-flame oxidation is higher in PCI than in conventional combustion, and it is increased for PCI with a higher speed and load, as indicated by a lower fuel alkanes/THC ratio, a higher alkenes/fuel alkanes ratio, and a higher methane/THC ratio. Ethene and n-undecane are two representative HC species, and they are used as a surrogate mixture in the gas flow reactor to simulate PCI and conventional combustion with in-cylinder post fuel injection. Among the three DOC formulations tested, the catalyst with constituent precious metals of platinum and palladium (PtPd) showed the best light-off performance, followed by PtPd with an addition of cerium dioxide (PtPd+CeO2), and platinum (Pt), regardless of exhaust compositions. Conventional combustion exhaust composition shows a lower light-off temperature than that of PCI, regardless of catalyst formulation.  相似文献   
916.
The potential for thermoelectric power generation (via waste heat recovery onboard automobiles) to displace alternators and/or provide additional charging to a vehicle battery pack has increased with recent advances in thermoelectric material processing. In gasoline fueled vehicles (GFVs), about 40% of fuel energy is wasted in exhaust heat, while a smaller amount of energy (30%) is ejected through the engine coolant. Therefore, exhaust-based thermoelectric generators (ETEG) have been a focus for GFV applications since the late 1980s. The conversion efficiency of modern thermoelectric materials has increased more than three-fold in the last two decades; however, disputes as to the thermal design of ETEG systems has kept their overall efficiency at limited and insufficient values. There are many challenges in the thermal design of ETEG systems, such as increasing the efficiency of the heat exchangers (hot box and cold plate), maintaining a sufficient temperature difference across the thermoelectric modules during different operating conditions, and reducing thermal losses through the system as a whole. This paper focuses on a review of the main aspects of thermal design of ETEG systems through various investigations performed over the past twenty years. This paper is organized as follows: first, the construction of a typical ETEG is described. The heat balance and efficiency of ETEG are then discussed. Then, the third section of this paper emphasizes the main objectives and challenges for designing efficient ETEG systems. Finally, a review of ETEG research activities over the last twenty years is presented to focus on methods used by the research community to address such challenges.  相似文献   
917.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   
918.
Optimized design for a MacPherson strut suspension with side load springs   总被引:1,自引:0,他引:1  
Undesired lateral force inevitably exists in a MacPherson suspension system, which is liable to damper rod’s side wear and promotes the damper’s inner friction decreasing the ride performance from the suspension system. Substituting a new side load spring with curved centerline for the conventional coil spring has been proven able to solve these problems and Multi-body Dynamics combining with Finite Elements Analysis may be an efficient method in optimizing its design. Therefore, taking a passenger car as example, a detailed multi-body dynamics model for the suspension system is built to simulate forces exerted on the damper and the minimization of its lateral component is selected as the design target for the spring. When the structure optimization of the side load spring is performed using FEA software ANSYS, its vertical and lateral elastic characteristics, supported by test data, are analyzed. After importing FEA results back to the suspension system, the dynamics simulation can be performed to validate the optimization result.  相似文献   
919.
This paper describes the development of an optimal design process for a steering column system and supporting system. A design guide is proposed at the initial concept stage of the development process to obtain sufficient stiffness of the steering system while reducing the idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, where vibration modes among the systems are separated by applying a vibration mode map at the initial stage of the design process. This study also provides design guidelines for an optimal dynamic damper system using a CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to the vehicle model to analyze the relation between the frequency and the sensitivity of the steering column system. This analysis methodology makes it possible to achieve target performance in the early design stage and reduction of damper tuning activity after the proto car test stage. Through the proposed steering column system development process, a lightweight vehicle with high stiffness is possible prior to the proto build stage. Furthermore, the improved process is expected to contribute to reducing the overall development period and the number of proto car tests necessary to achieve the desired steering system performance.  相似文献   
920.
This paper presents a steering control method for lane-following in a vehicle using an image sensor. With each image frame acquired from the sensor, the steering control method determines target position and direction, and constructs a travel path from the current position to the target position either as an Arc-path or S-path. The steering angle is calculated from the travel path thus generated, and the vehicle follows the travel path via motor-control. The method was tested using a vehicle dubbed as KAV (Korea Autonomous Vehicle) along an expressway (Seoul Inner Beltway) trajectory with a variety of radii (50 m ∼ 300 m) while traveling at a speed of 60 km/h to 80 km/h. Compared with an experienced human driver, the method showed little much difference in performance in terms of lane-center deviation. The proposed method is currently employed for high speed autonomous driving as well as for stop and go traffic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号