首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3653篇
  免费   15篇
公路运输   948篇
综合类   718篇
水路运输   1135篇
铁路运输   43篇
综合运输   824篇
  2023年   4篇
  2022年   21篇
  2021年   17篇
  2020年   16篇
  2019年   15篇
  2018年   365篇
  2017年   345篇
  2016年   384篇
  2015年   27篇
  2014年   54篇
  2013年   236篇
  2012年   168篇
  2011年   365篇
  2010年   359篇
  2009年   124篇
  2008年   292篇
  2007年   173篇
  2006年   35篇
  2005年   83篇
  2004年   63篇
  2003年   79篇
  2002年   42篇
  2001年   22篇
  2000年   31篇
  1999年   20篇
  1998年   25篇
  1997年   26篇
  1996年   26篇
  1995年   41篇
  1994年   7篇
  1993年   22篇
  1992年   15篇
  1991年   14篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1984年   11篇
  1983年   8篇
  1982年   5篇
  1981年   8篇
  1980年   14篇
  1979年   15篇
  1978年   10篇
  1977年   6篇
  1975年   9篇
  1974年   7篇
  1972年   4篇
排序方式: 共有3668条查询结果,搜索用时 15 毫秒
171.
In recent years, electric vehicles are developing rapidly in automotive industry. When involved in accidents, if the batteries of electric cars break, it is likely to cause a short circuit and start a fire. Aimed at this issue, a car battery protection device based on torsion spring has been designed. The car battery protection device can deform in a particular pattern in a collision accident. Impact energy of the accident is absorbed by the deformation, which can significantly reduce impact force on the batteries. Meanwhile, based on the principle of maximum energy absorption, some crucial parameters of the device can be determined. Furthermore, an impact simulation conducted on ANSYS software shows that maximum safety factors can be obtained when the material of car battery protection device is carbon steel. The analysis of “safe space” in the car battery protection device shows that the device can prevent battery damage effectively in general circumstances, which means the reliability of the device has been verified. Therefore, when applied to electric vehicles, the car battery protection device, which can prevent secondary accidents, significantly improves the vehicle security in accidents.  相似文献   
172.
Strain invariant failure theory (SIFT) is a micro-mechanics-based failure theory for multi-scale failure analysis of composite materials originally proposed by Gosse and Christensen. In this paper, the approach for obtaining strain amplification matrix which is a key step for the execution of SIFT is improved by adopting representative volume element (RVE) finite element models considering periodical boundary condition, based on which more actual deformation mode is reflected. The deformation modes and strain data at the characteristic points of the centroid cell of multi-cell RVE model are analyzed and taken as a reference. It can be concluded that more reasonable deformation mode and relationship between the micro-mechanical and macro-mechanical strain states are obtained by employing the new model. Finally, numerical examples are provided to illustrate the determination of strain amplification factors within the RVEs considering periodical boundary condition at the characteristic points.  相似文献   
173.
Wave simulation performance and its quality are key factors to reflect the overall capacity and level of an ocean engineering basin. They include wave simulating and absorbing capacity of reflected waves. In order to reduce the influence of reflected waves, various wave absorbing devices are equipped in ocean engineering basins across the world. The experimental investigation into the performance of combined cambered-type wave absorbing beach (CCTWAB) with damping bars equipped in Deepwater Offshore Basin is conducted. The experiment adopts the two-point method. The reflection coefficients are calculated by the method, in which the incident and reflected waves can be separated from the physically simulated composite waves with different periods and wave heights in the time domain. The experimental results indicate that in the range of normal wave heights and periods for model tests, the CCTWAB with damping bars is excellent in eliminating the reflected waves.  相似文献   
174.
In recent years, private sectors are encouraged to take an active part in franchising of urban infrastructure investments and operations, which promotes the rapid development of public-private partnership (PPP) in infrastructure and public service supply. Value for money (VFM) assessment has been officially proposed to provide a reference for selection of projects planning to adopt PPP. Based on the bottlenecks of VFM application in China and the uncertainties for urban infrastructure PPP projects, a discounted cash flow (DCF) model is established for VFM of infrastructure PPP projects. Then, a Monte Carlo simulation model is established on the basis of uncertainty factors for VFM. Through the analysis of Huai’an trams PPP project, coping strategies of uncertainties for VFM are put forward. Findings of the research may propel the establishment of a complete VFM evaluation system for PPP projects. Key instructional functions of VFM during the process of decision-making can be brought into full play and PPP may develop orderly.  相似文献   
175.
Sandy sediments in shallow coastal waters of the Baltic Sea are often characterised by large numbers of biogenic structures which are produced by macrozoobenthos species. A series of experiments was devised to quantify how the interaction of such structures with the near-bed flow regime affects the sediment flux. Most experiments were done with simplified replicates of structures generated by typical species commonly found in the Mecklenburg Bight, starting with solitary structures and regularly-spaced arrays in a range of characteristic population densities, followed by a complex benthic macrofauna community, both artificial and alive. A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a topography scanning laser, was used for high-resolution measurements (2 mm horizontal step size and 0.3 mm vertical resolution) of sand erosion (220 µm median grain size, at 20 cm s− 1) and fine particle deposition (8 µm grain size, at 5 cm s− 1). Sediment transport threshold values were measured for each layout. As a rule-of-thumb, both the erosion fluxes and the deposition of suspended matter increased considerably at low population densities (below 2%, expressed as percent of the sediment surface covered, i.e. roughness density RD). Above densities of 4%, erosion almost stopped inside the test arrays, and deposition remained well below the level of unpopulated areas. An attempt to extrapolate these findings to field conditions (using field current velocity data from 2001) showed that the net flux switched from erosion to deposition for densities above 5%. These parameters can now be integrated into a numerical sediment transport model coupling waves, currents, sediment dynamics and biological processes, which is currently under construction at the Baltic Sea Research Institute (IOW), Rostock, Germany.  相似文献   
176.
This article presents a study on the accuracy of the numerical determination of the friction and pressure resistance coefficients of ship hulls. The investigation was carried out for the KVLCC2 tanker at model- and full-scale Reynolds numbers. Gravity waves were neglected, i.e., we adopted the so-called double-model flow. Single-block grids with H–O topology were adopted for all the calculations. Three eddy viscosity models were employed: the one-equation eddy viscosity and the two-equation models proposed by Menter and the TNT version of the two-equation k-ω model. Verification exercises were performed in sets of nearly geometrically similar grids with different densities in the streamwise, normal, and girthwise directions. The friction and pressure resistance coefficients were calculated for different levels of the iterative error and for computational domains of different size. The results show that on the level of grid refinement used, it is possible to calculate the viscous resistance coefficients in H–O grids that do not match the ship contour with a numerical uncertainty of less than 1%. The differences between the predictions of different turbulence models were larger than the numerical uncertainty; however, these differences tended to decrease with increases in the Reynolds number. The pressure resistance was remarkably sensitive to domain size and far-field boundary conditions. Either a large domain or the application of a viscous–inviscid interaction procedure is needed for reliable results. This work was presented in part at the International Conference on Computational Methods in Marine Engineering—MARINE 2007, Barcelona, June 3–4, 2007.  相似文献   
177.
The two-dimensional water entry of a bow-flare ship section with constant roll angle, or heel angle, was studied by using a boundary element method. The fully nonlinear free surface conditions and exact body boundary conditions were satisfied. Nonviscous flow separation from the knuckles of the section or from the curved bottom could be simulated. The numerical calculations were compared with existing experimental results. First, the effects of roll angle were investigated and then the characteristics associated with large roll angles were examined in particular. The evolution of the free surfaces and the pressure distributions on the section surface are illustrated and the influence of nonviscous flow separation from the leeward section surface is discussed.  相似文献   
178.
Characteristic flow patterns generated by macrozoobenthic structures   总被引:2,自引:2,他引:0  
A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s− 1 and 10 cm s− 1) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1–2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of food particle capture due to altered particle pathways and residence times, but also for the exchange of gases, solutes and spawn. The present results confirm previous studies on flow interaction effects of various biogenic structures, and they add a deeper level of detail for a better understanding of the fine-scale effects.  相似文献   
179.
We report on an intensive campaign in the summer of 2006 to observe turbulent energy dissipation in the vicinity of a tidal mixing front which separates well mixed and seasonally stratified regimes in the western Irish Sea. The rate of turbulent dissipation ε was observed on a section across the front by a combination of vertical profiles with the FLY dissipation profiler and horizontal profiles by shear sensors mounted on an AUV (Autosub). Mean flow conditions and stratification were obtained from a bed mounted ADCP and a vertical chain of thermistors on a mooring. During an Autosub mission of 60 h, the vehicle, moving at a speed of ~ 1.2 m s− 1, completed 10 useable frontal crossings between end points which were allowed to move with the mean flow. The results were combined with parallel measurements of the vertical profile of ε which were made using FLY for periods of up to 13 h at positions along the Autosub track. The two data sets, which show a satisfactory degree of consistency, were combined to elucidate the space–time variation of dissipation in the frontal zone. Using harmonic analysis, the spatial structure of dissipation was separated from the strong time dependent signal at the M4 tidal frequency to yield a picture of the cross-frontal distribution of energy dissipation. A complementary picture of the frontal velocity field was obtained from a moored ADCP and estimates of the mean velocity derived from the thermal wind using the observed density distribution. which indicated the presence of a strong (0.2 m s− 1) jet-like flow in the high gradient region of the front. Under neap tidal conditions, mean dissipation varied across the section by 3 orders of magnitude exceeding 10− 2 W m− 3 near the seabed in the mixed regime and decreasing to 10− 5 W m− 3. in the strongly stratified interior regime. The spatial pattern of dissipation is consistent in general form with the predictions of models of tidal mixing and does not reflect any strong influence by the frontal jet.  相似文献   
180.
Geophysical turbulence is strongly affected by the variation of the Coriolis parameter with latitude. This variation results in the so-called β-effect, which forces energy from small-scales to be transferred preferentially into zonal motions. This effect results in the formation of narrow jet-like zonal flows that dominate the dynamics and act as transport barriers. Here, laboratory experiments are used to reproduce this effect in decaying turbulent flows. An electromagnetic cell is used to generate an initial field of vorticity in a rotating tank. Under conditions of quasi-geostrophic flow, the β-effect is produced by depth variation of the flow instead of variation of the Coriolis parameter. The effects of changing the container geometry and the overall fluid depth on the production of jets are investigated. The results suggest that this laboratory configuration can be used to model jet formation in the oceans and that increasing fluid depth is a practical way to decrease viscous effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号