排序方式: 共有1860条查询结果,搜索用时 20 毫秒
51.
Taeksu Jung Yongsik Park Young Jin Kim Chongdu Cho 《International Journal of Automotive Technology》2017,18(6):1037-1045
Ensuring engine efficiency is a crucial issue for automotive manufacturers. Several manufacturers focus on reducing the time taken to develop and introduce brand new vehicles to the market. Thus, a synergic approach including various simulations is generally adopted to achieve a development schedule and to reduce the cost of physical tests. This study involved proposing a design process that is very useful in the preliminary development stage through effective support from simulations. This type of simulation-based design process is effective in developing timing chain drives; the use of this process, based on results from multiple trials, showed improvements in performance including low friction and vibration, improved durability, and cost-effective part design when compared to conventional processes. This study proposes an integrated approach to the preliminary design of an automotive timing chain system. The approach involves structural and dynamic analyses. The details of the design process are described by using the case of a virtual engine. This study conducted and summarized a dynamic and structural analysis as well as topological optimization to describe a process to obtain optimal results. The results of this study indicated the following improvements in overall performance factors: 12.1 % improvement in transmission error, 10.1 % reduction in chain tension, 46 % reduction in tensioner arm weight, and 11 % reduction in transversal displacement. 相似文献
52.
Zheng Ran Hua Yan Huimin Zhang Yun Li 《International Journal of Automotive Technology》2017,18(6):1109-1119
The AUTOSAR has been developed as the worldwide standard for automotive E/E software systems, making the electronic components of different suppliers to be employed universally. However, as the number of component-based applications in modern automotive embedded systems grows rapidly and the hardware topology becomes increasingly complex, deploying such large number of components in automotive distributed system in manual way is over-dependent on experience of engineers which in turn is time consuming. Furthermore, the resource limitation and scheduling analysis make the problems more complex for developers to find out an approximate optimal deploying approach in system integration. In this paper, we propose a novel method to deploy the AUTOSAR components onto ECUs with the following features. First, a clustering algorithm is designed for deploying components automatically within relatively low time complexity. Second, a fitness function is designed to balance the ECUs load. The goal of our approach is to minimize the communication cost over all the runnable entities while meeting all corresponding timing constraints and balancing all the ECUs load. The experiment results show that our approach is efficient and has well performance by comparing with other existing methods in specific and synthetic data set. 相似文献
53.
Donghoon Kim Stephen Sungsan Park Choongsik Bae 《International Journal of Automotive Technology》2018,19(1):1-8
Three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures in a constant volume chamber. Fuels were injected into a high pressure/high temperature chamber under the same in-cylinder pressure and temperature conditions of low load in a GDCI (gasoline direct injection compression ignition) engine. Two injection pressures (40 MPa and 80 MPa), two ambient pressures (4.2 MPa and 1.7 MPa), and two ambient temperatures (908 K and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. Vapor developments of the two fuels were similar; however, different liquid developments were seen. At the same injection pressure and ambient temperature, gasoline liquid propagated more quickly and disappeared more rapidly than diesel liquid phase. At the low ambient temperature and pressure condition, gasoline and diesel sprays with higher injection pressures showed longer liquid lengths due to higher spray momentum. At the higher ambient temperature condition, the gasoline liquid length was shorter for the higher injection pressure. Higher volatility of gasoline is the main reason for this shorter liquid length under higher injection pressure and higher ambient temperature conditions. For a design of GDCI engine, it is necessary to understand the higher volatility of gasoline. 相似文献
54.
Jerzy Ejsmont Stanislaw Taryma Grzegorz Ronowski Beata Swieczko-Zurek 《International Journal of Automotive Technology》2018,19(1):45-54
Temperature is a very important factor controlling rolling resistance of road vehicle tyres. There are at least three different temperatures that may be considered as important factors controlling thermal conditions of the rolling tyre. The most common measure of the thermal conditions during tyre rolling is ambient air temperature. The other two are: pavement temperature and “tyre” temperature. Tyre temperature is the most difficult to establish, as temperatures of different parts of rolling tyres differ considerably, thus there is a problem to obtain representative values. In the authors’ opinion, air temperature is the most universal and reliable parameter to measure. The article presents results obtained in the Technical University of Gdańsk during laboratory and road measurements of different car tyres rolling on different pavements. The knowledge of rolling resistance characteristics is important for modelling car dynamics as well as fuel consumption. It is also necessary to establish proper test conditions in the future standardized on-road method of measuring rolling resistance. The results indicate that generally each tyre and pavement combination is influenced by the air temperature in a unique way, but at the same it is possible to propose some general influence factors that may be used to normalize measurements to the standard temperature of 25 °C. 相似文献
55.
Bogdan Tolea Alexandru Ionut Radu Horia Beles Csaba Antonya 《International Journal of Automotive Technology》2018,19(1):85-98
The goal of this paper is to determine how the geometry of the vehicle’s frontal profile is influencing the pedestrian’s head accelerations (linear and angular) in car-to-pedestrian accidents. In order to achieve this goal, a virtual multibody dummy of the pedestrian was developed and multiple simulations of accidents were performed using vehicles with different frontal profile geometry, from different classes. The type of accidents considered is characteristic for urban areas and occur at relatively low speed (around 30 km/h) when an adult pedestrian is struck from the rear and the head acceleration variation are the measurement of the accident severity. In the accident simulation 3D meshes were applied on the geometry of the vehicles, in order to define the contact surface with the virtual dummy, similar with real vehicles. The validation of the virtual pedestrian dummy was made by performing two crash-tests with a real dummy, using the same conditions as in the simulations. The measured accelerations in the tests were the linear and angular accelerations of the head during the impact, and these were compared with the ones from the simulations. After validating the virtual model of the car-to-pedestrian accident, we were able to perform multiple simulations with different vehicle shapes. These simulations are revealing how the geometric parameters of the vehicle’s frontal profile are influencing the head acceleration. This paper highlights the main geometric parameters of the frontal profile design that influence the head injury severity and the way that the vehicles can be improved by modifying these parameters. The paper presents an approach to determine the “friendliness” of the vehicle’s frontal profile in the car-to-pedestrian collision. 相似文献
56.
Young-Doo Kwon Seong-Hwa Jun Jin-Sik Han Dong-Jin Lee 《International Journal of Automotive Technology》2018,19(1):99-106
In the automobile industry, the service life of gaskets is defined as the time until which a released gasket recovers 60 % of the original compression. It was observed that the recovery curves of gaskets were highly nonlinear at high temperatures, and relatively nonlinear at temperatures above the room temperature. However, it was also noted that the recovery curves of the gaskets at temperatures below room temperature exhibited linearity with respect to the ln(time). Automotive manufacturers demand gasket life criteria that exceed a specific time or the entire life of a car. In the case of gaskets used at lower temperatures, since materials encounter losses in its flexibility and conformability, the definition of service life specifying a 60 % recovery may not be sufficiently safe to eliminate possible leakages. In this study, new gasket life criteria that could be used at low temperatures were proposed. The new criteria were proposed based on the change in Young’s modulus of the gasket material in order to conserve the sealing capability. 相似文献
57.
The estimation of the overspeed risk before the accident is among the main goals of this paper. The proposed method uses the Energy Equivalent Speed (EES) to assess the severity of an eventual accident. However, the driver behavior evaluation should take into account the parameters related to the Driver, the Vehicle and the Environment (DVE) system. For this purpose, this paper considers a two-level strategy to predict the global risk of an event using the Dempster-Shafer Theory (DST) and the Fuzzy Theory (FT). This paper presents two methods to develop the Expert Model-based Basic Probability Assignment (EM based BPA), which is the most important task in the DST. The first one is based on the accident statistics and the second method deals with the relationship between the Fuzzy and Belief measurements. The experimental data is collected by one driver using our test vehicle and a Micro-intelligent Black Box (Micro-iBB) to collect the driving data. The sensitivity of the developed models is analysed. Our main evaluation concerns the Usage Based Insurance (UBI) applications based on the driving behavior. So, the obtained masses over the defined referential subsets in the DST are used as a score to compute the driver’s insurance premium. 相似文献
58.
59.
Hyung Seok Heo Suk Jung Bae Sung Mok Hong Seung Uk Park 《International Journal of Automotive Technology》2018,19(2):221-231
Although fuel cost has been the largest portion of annual operating costs of construction equipment, it is possible to save the energy and reduce cost using fuel economy enhancement technology. In this study, an organic Rankine cycle is applied to an excavator in order to recover waste heat, reproduce it into electrical energy, and consequently reduce the fuel consumption by 10 %. A design process was carried out to develop an exhaust gas superheater that recovers the waste heat from exhaust gas through a composite-dimensional thermal flow analysis. A one-dimensional code was developed to perform a size design for the exhaust gas superheater. The ranges for the major design parameters were determined to satisfy the target of the heat recovery, as well as the pressure drop at both fluid sides. Performance analysis was done through onedimensional design code results, which were compared with three-dimensional CFD analysis. By utilizing a 3D commercial code, the arrangement of the tubes was selected and the working fluid pressure drop was reduced through a detailed layout design. The design procedure was verified by a performance evaluation of the prototype, which yielded only a 7 % tolerance in heat recovery. 相似文献
60.
Xu Boyan Jiang Longlong Sun Chaodong Liu Yingchun 《International Journal of Automotive Technology》2018,19(2):313-321
The use of automotive LPG characteristics which are easy to evaporate vaporization and carry. The paper presents a design of extended-range electric vehicle for wall-guided two stroke LPG engine with direct injection combustion system. Based on the modified vehicle LPG spray model, a database describing the characteristics of vehicle LPG fuel was built and imported into the CFD software. And the accuracy of the model is verified by the Schlieren experimental results. The concentration and velocity field of the mixture in the cylinder under different load conditions are numerically analyzed. The analyzed result indicated that the start injection time θ = 60°–70°CA BTDC under part load condition, the plug electrode near the gathering of a richer mixture is easy to be fired at spark ignition time, the obvious formation of mixture in cylinder is formed and the overall air-fuel ratio is above 40: 1. The start-transition working condition and large load conditions in the piston moves upward before closing the exhaust port to start injection LPG. The optimized LPG injection start time θ ensures that the fresh gas is locked in the cylinder when the exhaust port is closed (63°CA ABDC). In the ignition time of the spark plug, an ideal homogeneous mixture in the cylinder is realized. 相似文献