首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   3篇
公路运输   159篇
综合类   9篇
水路运输   36篇
铁路运输   1篇
综合运输   18篇
  2020年   4篇
  2019年   2篇
  2018年   23篇
  2017年   13篇
  2016年   18篇
  2015年   5篇
  2014年   15篇
  2013年   25篇
  2012年   18篇
  2011年   22篇
  2010年   17篇
  2009年   19篇
  2008年   13篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有223条查询结果,搜索用时 46 毫秒
181.
Traffic density can be accurately measured by counting the number of vehicles within 1 km; however, it is often calculated between macroscopic traffic parameters using the fundamental equation because of difficulty of observing traffic density directly in the field. Measuring density in this way may be inaccurate and may bias the analysis because the relationship between these traffic parameters can vary across the study sites. The purpose of this study is to find a method for measuring traffic density from aerial photography that is easy and accurate, and for this purpose, we investigated whether the measuring length (i.e., the length of a section of roadway from which observations of traffic are simultaneously collected) can be shorter than 1 km and yet retain the same measured traffic density. We divided an aerial photograph into several 20‐m unit sections, counted the number of vehicles manually, and examined measured traffic density according to central limit theory. According to the results of this study, with the number of 20‐m unit sections for observing traffic density at 15 (the measuring length is 300 m), the measured traffic density was almost the same as the density of a representative section of 1 km. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
182.
Hydrodynamic standards have been derived for the improvement of propulsive performance of twin-skeg hull forms. Three important physical observations were used in the optimization of design practice for the stern hull form of twin-skeg ships: limiting streamline pattern on the inner and outer skeg surface of a stern skeg, the balance between the flow intensity over the inner and outer skeg surface of a stern skeg and nominal wake distribution in the propeller plane. Numerical calculations and model tests have been compared to validate a CFD code used in the current work. Based on the stern flow analysis for the evaluation of self-propulsion performance, effects of stern skeg arrangement on the propulsion efficiency, i.e. the distance between skegs and the angle of the skeg with respect to shaft centerline, were intensively investigated. An optimized hull form design for a twin-skeg ship was developed using the design practice derived in this work.  相似文献   
183.
A finite-difference scheme and a marker-and-cell (MAC) method are used for numerical wave tank (NWT) simulations to investigate the characteristics of nonlinear wave motions and their interactions with a stationary three-dimensional body in the presence of steady uniform currents. The Navier–Stokes (NS) equation is solved in the computational domain, and the boundary values are updated at each time-step by a finite-difference time-marching scheme in the frame of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the marker–density function technique developed for two fluid layers. The incident waves are generated from the inflow boundary by prescribing a velocity profile resembling the motions of a flexible flap wavemaker, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the tank. Using the NS–MAC NWT, nonlinear wave and current interactions around a stationary vertical truncated circular cylinder are studied, and the results are compared with the experimental results of Mercier and Niedzwecki, a time-domain NWT based on linear potential theory, a fully nonlinear NWT, and a second-order diffraction computation. Received: July 3, 2001 / Accepted: September 25, 2001  相似文献   
184.
To assess safety impacts of untried traffic control strategies, an earlier study developed a vehicle dynamics model‐integrated (i.e., VISSIM‐CarSim‐SSAM) simulation approach and evaluated its performance using surrogate safety measures. Although the study found that the integrated simulation approach was a superior alternative to existing approaches in assessing surrogate safety, the computation time required for the implementation of the integrated simulation approach prevents it from using it in practice. Thus, this study developed and evaluated two types of models that could replace the integrated simulation approach with much faster computation time, feasible for real‐time implementation. The two models are as follows: (i) a statistical model (i.e., logit model) and (ii) a nonparametric approach (i.e., artificial neural network). The logit model and the neural network model were developed and trained on the basis of three simulation data sets obtained from the VISSIM‐CarSim‐SSAM integrated simulation approach, and their performances were compared in terms of the prediction accuracy. These two models were evaluated using six new simulation data sets. The results indicated that the neural network approach showing 97.7% prediction accuracy was superior to the logit model with 85.9% prediction accuracy. In addition, the correlation analysis results between the traffic conflicts obtained from the neural network approach and the actual traffic crash data collected in the field indicated a statistically significant relationship (i.e., 0.68 correlation coefficient) between them. This correlation strength is higher than that of the VISSIM only (i.e., the state of practice) simulation approach. The study results indicated that the neural network approach is not only a time‐efficient way to implementing the VISSIM‐CarSim‐SSAM integrated simulation but also a superior alternative in assessing surrogate safety. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
185.
Under a stochastic roadway, drivers need a route guidance system incorporating travel time variability. To recommend a customized path depending on the trip purpose and the driver’s risk-taking behavior, various path ranking methods have been developed. Unlike those methods, our proposed disutility method can easily incorporate a target arrival time in the ranking process by measuring how late the travel is and by penalizing it depending on the severity of lateness. In addition, the disutility-based route guidance system can properly address travel time unreliability that causes unacceptable disruptions to the driver’s schedule (i.e., unexpected long delay). We compare the disutility-based path ranking method with other ranking methods, the percentile travel time, the mean excess travel time, and the on-time arrival probability. We show that the disutility has stronger discriminating power and requires less solution space to find an optimal path. The most important advantage is that it can estimate a driver’s risk-taking behavior for each trip purpose by using the discrete choice analysis. We construct a simulation framework to acquire the travel time data on a hypothetical roadway. We analyze the data and show how various ranking methods recommend a customized path. Using the data, we show the advantage of the disutiltiy method over the other methods, which is generating a customized path with respect to the target arrival time by properly penalizing the travel time lateness.  相似文献   
186.
Emissions of CO2, as the main component of greenhouse gases, and high fuel consumption rates are worldwide problems. To solve them, most car manufacturers have concentrated on developing various techniques to improve the efficiencies of engines and transmissions and ECO-ROUTEs to meet environmental regulations. In this study, an algorithm for determining routes that cause the least fuel consumption was developed. The core of this algorithm is a specific EEC (energy efficiency constant) map containing logic that is able to predict fuel consumption. The accuracy of the algorithm was confirmed by vehicle tests for various driving patterns. Parameters affecting vehicle fuel economy were studied and verified. Improvement in the accuracy of this algorithm was confirmed by applying these parameters to ECO-ROUTE logic.  相似文献   
187.
This paper presents a heuristic resource allocation and scheduling method, which is based on an integrated architecture that enables multiple missions to be embedded in a single electronic control unit (ECU) and a single mission to be distributed over multiple ECUs. The proposed design method is composed of resource(e.g. task and message) allocation, scheduling, and attribute assignments. From a given target application’s task graph, the method generates a scheduling table specifying the release, start, and completion timings of tasks and messages. After that, all relevant attributes(e.g. priority of tasks and messages) are automatically assigned. In order to guarantee the functional and temporal requirements of target applications, design constraints such as the worst case response time, deadline, precedence relations, and physical limitations are concurrently considered. A chassis control system consisting of electronic stability control, an electro-mechanical brake, continuous damping control, and electronic air suspension is employed for evaluating the proposed method. The conventional chassis control system which is composed of seven ECUs was redesigned by only four ECUs without the degradation of control performance. Consequently, it is expected that the development time and production cost of distributed automotive control systems can be significantly reduced by the proposed design method.  相似文献   
188.
By high particulate matter(PM) reduction performance, diesel particulate filter(DPF) is applied to almost all of modern HSDI diesel engine. PM emitted from diesel engine is consist of carbon based and non-carbon based material. Representative carbon based PM is soot. Non-carbon based PM is produced by wear of engine and exhaust component, combustion of lubrication oil and sulphur in fuel. Accumulation of non-carbon based PM affects pressure difference of DPF and thus accuracy of soot mass estimation in DPF can be lowered during normal and regeneration condition when the pressure difference caused by non-carbon based PM is not recognized correctly. Also unevenly accumulated PM inside of DPF can produce locally different exhaust gas temperature and thus it can lower accuracy of soot mass estimation during regeneration. This study focuses on estimation of soot oxidation rate not by conventional pressure difference but by exhaust gas analysis at up and downstream of DPF. Results, strong correlations between CO2 -fuel mass ratio and soot oxidation was observed.  相似文献   
189.
The shock-jerk phenomenon is usually observed in vehicles with manual transmission systems that are rapidly accelerating, and this phenomenon makes the passenger feel uncomfortable. This phenomenon can be minimized using torque control of the vehicle with throttle-by-wire or an ETC (Electronic Throttle Control) system. In this paper, the drivetrain of the vehicle is modeled to simulate the vehicle behavior, and the control strategy of ETC is studied to reduce shock and jerk characteristics using an input shaping method. The control logic is verified by using vehicle modeling and simulations.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号