首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
综合运输   14篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2016年   2篇
  2014年   2篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 187 毫秒
11.
This paper proposes a multivariate ordered-response system framework to model the interactions in non-work activity episode decisions across household and non-household members at the level of activity generation. Such interactions in activity decisions across household and non-household members are important to consider for accurate activity-travel pattern modeling and policy evaluation. The econometric challenge in estimating a multivariate ordered-response system with a large number of categories is that traditional classical and Bayesian simulation techniques become saddled with convergence problems and imprecision in estimates, and they are also extremely cumbersome if not impractical to implement. We address this estimation problem by resorting to the technique of composite marginal likelihood (CML), an emerging inference approach in the statistics field that is based on the classical frequentist approach, is very simple to estimate, is easy to implement regardless of the number of count outcomes to be modeled jointly, and requires no simulation machinery whatsoever.The empirical analysis in the paper uses data drawn from the 2007 American Time Use Survey (ATUS) and provides important insights into the determinants of adults’ weekday activity episode generation behavior. The results underscore the substantial linkages in the activity episode generation of adults based on activity purpose and accompaniment type. The extent of this linkage varies by individual demographics, household demographics, day of the week, and season of the year. The results also highlight the flexibility of the CML approach to specify and estimate behaviorally rich structures to analyze inter-individual interactions in activity episode generation.  相似文献   
12.
Accurate road-traffic emission inventories are of great interest to metropolitan planning agencies especially in the appraisal of regional transport policies. Integrated road transport emission models are an effective means of establishing emission estimates, yet their development requires significant investments in data and resources. It is therefore important to investigate which data inputs are the most critical to inventory accuracy. To address this issue, an integrated transport and emissions model is developed using the Montreal metropolitan region as a case-study. Daily regional hydrocarbon (HC) emissions from private individual travel are estimated, including the excess emissions due to engine starts. The sensitivity of emission estimates is then evaluated by testing various levels of input aggregation common in practice and in previous research. The evaluated inputs include the effect of start emissions, ambient weather conditions, traffic speed, path choice, and vehicle registry information. Inherent randomness within the integrated model through vehicle selection and path allocation is also evaluated. The inclusion of start emissions is observed to have the largest impact on emission inventories, contributing approximately 67 % of total on-road HC emissions. Ambient weather conditions (season) and vehicle registry data (types, model years) are also found to be significant. Model randomness had a minimal effect in comparison with the impact of other variables.  相似文献   
13.
The current study contributes to the literature on transit ridership by considering daily boarding and alighting data from a recently launched commuter rail system in Orlando, Florida – SunRail. The analysis is conducted based on daily boarding and alighting data for 10 months for the year 2015. With the availability of repeated observations for every station, the potential impact of common unobserved factors affecting ridership variables are considered. The current study develops an estimation framework, for boarding and alighting separately, that accounts for these unobserved effects at multiple levels – station, station-week and station-day. In addition, the study examines the impact of various observed exogenous factors such as station level, transportation infrastructure, transit infrastructure, land use, built environment, sociodemographic and weather variables on ridership. The model system developed will allow us to predict ridership for existing stations in the future as well as potential ridership for future expansion sites.  相似文献   
14.
This paper employs a pseudo-panel approach to study vehicle ownership evolution in Montreal region, Canada using cross-sectional origin–destination survey datasets of 1998, 2003 and 2008. Econometric modeling approaches that simultaneously accommodate the influence of observed and unobserved attributes on the vehicle ownership decision framework are implemented. Specifically, we estimate generalized versions of the ordered response model—including the generalized, scaled- and mixed-generalized ordered logit models. Socio-demographic variables that impact household’s decision to own multiple cars include number of full and part-time working adults, license holders, middle aged adults, retirees, male householders, and presence of children. Increased number of bus stops, longer bus and metro lengths within the household residential location buffer area decrease vehicle fleet size of households. The observed results also varied across years as manifested by the significance of the interaction terms of some of the variables with the time elapsed since 1998 variable. Moreover, variation due to unobserved factors are captured for part-time working adults, number of bus stops, and length of metro lines. In terms of the effect of location of households, we found that some neighborhoods exhibited distinct car ownership temporal dynamics over the years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号