首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1971篇
  免费   13篇
公路运输   681篇
综合类   60篇
水路运输   599篇
铁路运输   51篇
综合运输   593篇
  2023年   11篇
  2022年   36篇
  2021年   20篇
  2020年   15篇
  2019年   24篇
  2018年   65篇
  2017年   49篇
  2016年   79篇
  2015年   17篇
  2014年   80篇
  2013年   303篇
  2012年   96篇
  2011年   100篇
  2010年   94篇
  2009年   95篇
  2008年   101篇
  2007年   53篇
  2006年   38篇
  2005年   38篇
  2004年   29篇
  2003年   30篇
  2002年   23篇
  2001年   24篇
  2000年   34篇
  1999年   21篇
  1998年   29篇
  1997年   36篇
  1996年   35篇
  1995年   45篇
  1994年   20篇
  1993年   21篇
  1992年   15篇
  1991年   12篇
  1990年   14篇
  1989年   12篇
  1988年   19篇
  1987年   15篇
  1986年   12篇
  1985年   19篇
  1984年   17篇
  1983年   15篇
  1982年   23篇
  1981年   28篇
  1980年   18篇
  1979年   34篇
  1978年   12篇
  1977年   18篇
  1976年   10篇
  1975年   12篇
  1974年   8篇
排序方式: 共有1984条查询结果,搜索用时 15 毫秒
181.
At conceptual design stage, beam element is extensively used to create the frame structure of automobile body, which can not only archive the accurate stiffness but also reduce much computational cost. However, the stress definition of beam element is very complex so that the stress sensitivity and optimization are difficult to analytically derive and numerically program. This paper presents an solution to this problem and an application in the lightweight optimization design of automobile frame. Firstly, maximal Von Mises stress of rectangular tube is calculated by using the superposition of stress, which is together induced by the axial force, bending moments, torsional moment and shear force. Secondly, the sensitivity of Von Mises Stress with respect to size design variables: breadth, height and thickness are derived, respectively. Thirdly, an optimal criterion is constructed by Lagrangian multiplier method to solve the frame optimization with stress constraints. Lastly, numerical example of car frame proves that the proposed method can guarantee the stress of each beam element almost fully reaches at the yielding stress.  相似文献   
182.
In this two-part paper, a topological analysis of powertrains for refuse-collecting vehicles (RCVs) based on the simulation of different architectures (internal combustion engine, hybrid electric, and hybrid hydraulic) on real routes is proposed. In this first part, a characterization of a standard route is performed, analyzing the average power consumption and the most frequent working points of an internal combustion engine (ICE) in real routes. This information is used to define alternative powertrain architectures. A hybrid hydraulic powertrain architecture is proposed and modelled. The proposed powertrain model is executed using two different control algorithms, with and without predictive strategies, with data obtained from real routes. A calculation engine (an algorithm which runs the vehicle models on real routes), is presented and used for simulations. This calculation engine has been specifically designed to analyze if the different alternative powertrain delivers the same performance of the original ICE. Finally, the overall performance of the different architectures and control strategies are summarized into a fuel and energy consumption table, which will be used in the second part of this paper to compare with the different architectures based on hybrid electric powertrain. The overall performance of the different architectures indicates that the use of a hybrid hydraulic powertrain with simple control laws can reduce the fuel consumption up to a 14 %.  相似文献   
183.
In this paper, a rule-based controller is developed for the control of a semi-active suspension to achieve minimal vertical acceleration. The rules are derived from the results obtained with a model predictive controller. It is shown that a rule-based controller can be derived that mimics the results of the model predictive controller and minimises vertical acceleration. Besides this, measurements on a test vehicle show that the developed rule-based controller achieves a real-world reduction of the vertical acceleration, which is in agreement with the simulations.  相似文献   
184.
This paper studies the use of the least damping ratio among system poles as a performance metric in passive vehicle suspensions. Methods are developed which allow optimal solutions to be computed in terms of non-dimensional quantities in a quarter-car vehicle model. Solutions are provided in graphical form for convenient use across vehicle types. Three suspension arrangements are studied: the standard suspension involving a parallel spring and damper and two further suspension arrangements involving an inerter. The key parameters for the optimal solutions are the ratios of unsprung mass to sprung mass and suspension static stiffness to tyre vertical stiffness. A discussion is provided of performance trends in terms of the key parameters. A comparison is made with the optimisation of ride comfort and tyre grip metrics for various vehicle types.  相似文献   
185.
The warm shrink fitting process is generally used to assemble automobile transmission parts (shafts/gears). However, this process causes a deformation in the addendum and dedendum of the gear depending on the fitting interference and gear profile, and this deformation causes additional noise and vibration between the gears. To address these problems, the warm shrink fitting process is analyzed by considering the error in the dimensional deformation of the addendum and dedendum found when comparing the results of a theoretical analysis and finite element analysis (FEA). A correction coefficient that reduces this error is derived through an analysis of the difference in the cross-sectional area between the shapes used for the theoretical analysis and that of the actual gear, and a closed-form equation to predict the dimensional deformation of the addendum and dedendum is proposed. The FEA method is proposed to analyze the thermal-structural-thermal coupled field analysis of the warm shrink fitting process (heating-fitting-cooling process). To verify the closed-form equation using the correction coefficient, measurements are made of actual helical gears used in automobile transmissions. The results are in good agreement with those given by the closed-form equation.  相似文献   
186.
This study proposes an aerodynamically optimized outer shape of a sedan by using an Artificial Neural Network (ANN), which focused on modifying the rear body shapes of the sedan. To determine the optimization variables, the unsteady flow field around the sedan driving at very fast speeds was analyzed by CFD simulation, and fluctuations of the drag coefficient (C D ) and pressure around the car were calculated. After consideration of the baseline result of CFD, 6 local parts from the end of the sedan were chosen as the design variables for optimization. Moreover, an ANN approximation model was established with 64 experimental points generated by the D-optimal methodology. As a result, an aerodynamically optimized shape for the rear end of the sedan in which the aerodynamic performance is improved by about 5.64% when compared to the baseline vehicle is proposed. Finally, it is expected that within the accepted range of shape modifications for a rear body, the aerodynamic performance of a sedan can be enhanced so that the fuel efficiency of the sedan can be improved. The YF SONATA, a sedan manufactured by Hyundai Motors Corporate, played a major role in this research as the baseline vehicle.  相似文献   
187.
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.  相似文献   
188.
Tire intelligence is vital in the improvement of the safety of vehicles because the tire supports the car body and is the contact point between the vehicle and the road. To create an intelligent tire, sensors must be installed to measure the behavior of the tire. However, it is difficult to apply a wired sensor system on the wheel of the tire. Hence, it is necessary to implement a self-powering, wireless system (a type of energy harvesting system) that can be mounted inside the tire. The purpose of this study is to convert the strain energy caused by deformation of the tire while driving into useful electrical energy to supply the sensor system. A flexible piezofiber is utilized for the energy conversion. The variation in strain, due to changes in speed, load, and the internal pressure of the tire, was measured along two axial directions to evaluate the amount of available strain energy. The amount of strain changed from 0.15% to 0.8%. To predict the amount of available energy from a tire, we perform an analysis of the relationship between the strain and the voltage. In addition, experiments for impedance matching between piezofiber and related circuits were conducted to optimize the external loads for transferring energy efficiently. Based on the procedure mentioned above, at least 0.58 mJ of electrical energy can be generated by using the laterally oriented strain (1500 to 2500 micro strain). The result of this study is expected to enhance the potential realization of self-generating wireless sensor systems for so-called ??intelligent?? tires.  相似文献   
189.
Double-cantilever beam (DCB) and tapered double-cantilever beam (TDCB) specimens are the test configurations most commonly used to measure the fracture toughness of composites and adhesive joints. Strain rates of 1 to 18.47 m/s were applied to the test specimens via high-speed hydraulic test equipment. Because the fracture occurs through the adhesively bonded joints and the cracks grow rapidly, the crack length and beam displacement were recorded by a high-speed camera. An energy range from 0 to 10 J was often observed in the high-strain-rate fracture experiments for nonlinear plastic behavior of the dynamically loaded adhesively bonded DCB and TDCB specimens. The range of energy release rates (fracture energy) for TDCB specimen was 2 to 3 times higher than that of a DCB specimen for all high strain rates. The fracture energy of automotive adhesive joints can be estimated using the experimental results in this study for the fracture toughness (GIC) under high rates of loading. The crack grows as the applied fracture energy exceeds the value of the critical energy release rate (GIC) at the crack tip. The energy release rate was calculated using the fracture mechanics formula. The key fracture mechanics parameter, the fracture energy GIC, was ascertained as a function of the test rate and can be used to assess and model the overall joint performance.  相似文献   
190.
不同稳定剂对SBS改性沥青稳定效果的对比研究   总被引:1,自引:0,他引:1  
通过试验测试不同老化时间样品的针入度、软化点和延度比较其相容性和路用流变学性能指标的变化,分析体系宏观稳定性和稳定剂性能特征,并通过形态结构照片分析稳定剂改善的效果。结果表明,加入稳定剂后改性沥青的高温储存稳定性明显改善,同时加入FD-06无硫稳定剂的改性沥青在热储存过程中性能更加稳定,不易离析。沥青中的部分组份具有化学活性,利用其活性点,引入带有活性基团的反应物,并通过被引入分子的化学结构的调节改善SBS与沥青的相容性,从而制备储存稳定性良好的SBS改性沥青。化学改性技术的应用提高了路用改性沥青的性能/价格比。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号