首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1246篇
  免费   20篇
公路运输   518篇
综合类   41篇
水路运输   301篇
铁路运输   42篇
综合运输   364篇
  2023年   14篇
  2022年   40篇
  2021年   18篇
  2020年   12篇
  2019年   19篇
  2018年   33篇
  2017年   36篇
  2016年   70篇
  2015年   18篇
  2014年   77篇
  2013年   151篇
  2012年   78篇
  2011年   72篇
  2010年   70篇
  2009年   83篇
  2008年   51篇
  2007年   24篇
  2006年   20篇
  2005年   30篇
  2004年   18篇
  2003年   21篇
  2002年   22篇
  2001年   18篇
  2000年   17篇
  1999年   17篇
  1998年   11篇
  1997年   14篇
  1996年   13篇
  1995年   20篇
  1994年   11篇
  1993年   13篇
  1992年   7篇
  1991年   7篇
  1989年   4篇
  1988年   4篇
  1987年   7篇
  1986年   8篇
  1985年   9篇
  1984年   9篇
  1983年   12篇
  1982年   6篇
  1981年   12篇
  1980年   9篇
  1979年   9篇
  1977年   10篇
  1976年   10篇
  1975年   15篇
  1974年   6篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1266条查询结果,搜索用时 15 毫秒
381.
This paper introduces a method to detect abnormality of MGS (Motor-Generator System) in HEV (Hybrid Electric Vehicle) using its temperature. The MGS in HEV consists of two Motor-Generators (MG1, MG2), Compound Gear Unit, and etc. The MG1 is to act as a generator in conventional internal combustion engine. And the MG2 is an electric motor to rotate wheel of vehicle using saved electricity in battery or using produced electricity via the MG1. In case of overheating, the electric motors are easily damaged because resistance of wires in motor is abnormally changed. Therefore, detection of abnormally changed temperature in motors (MG1 and MG2) is essential. In this study, the temperature distribution of two Motor-Generators is observed simultaneously in 2-dimensional space. A boundary region of normal operation temperature of two motors is obtained via SVDD technique utilizing Gaussian kernel, one of the most widely being used Mercer kernels. Linear SVDD technique generates boundary of exact ball shape, however SVDD technique using Gaussian kernel can generate nonlinear boundary of distorted ball shape. Abnormality boundary comparison is made between the obtained boundary via SVDD technique and those obtained from conventional temperature range checking method. In order to compare the performance of proposed method, the actual vehicle operation data in excessive driving condition on mountain road is adopted. In verification, simulation shows that warning time due to proposed method is faster and more efficient than those due to conventional method. It is also shown that the reliability of the Motor-Generator System can be improved by using the proposed abnormality detection method.  相似文献   
382.
A transient numerical model of a lithium ion battery (LiB) pack with air cooled thermal management system is developed and validated for electric vehicle applications. In the battery model, the open circuit voltage and the internal resistance map based on experiments are used. The Butler-Volmer equation is directly considered for activation voltage loss estimation. The heat generation of cells and the heat transfer from cells are also calculated to estimate temperature distribution. Validations are conducted by comparison between experimental results at the cell level and the pack level. After validations, the effects of module arrangement in a battery pack are studied with different ambient temperature conditions. The configuration that more LiB cells are placed near the air flow inlet is more effective to reduce the temperature deviation between modules.  相似文献   
383.
This paper proposes a design and implementation of an auxiliary mode, hybrid electric scooter (HES) by means of more cost-effective way for improving scooter’s performance and efficiency. The HES is built in a parallel hybrid configuration with a 24V 370W auxiliary power electric motor, a 24V 20AH battery, and an electronically controlled fuel injection internal combustion engine (ICE) scooter. In contrast to hybrid electric vehicles (HEVs), the issues concerning cost, volume, and reliability are even more rigorous when developing hybrid electric scooters (HESs). Therefore, the drive topology and control strategy used in HEV cannot be applied to HES directly. In order to hasten the developing phase and achieve the parametric tune-up of the HES component, a dynamic simulation model for the HES is developed here. Because the powertrain system is complex and nonlinear in nature, the simulation model utilizes mathematical models in tandem with accumulated experimental data. The method about the mathematical model construction, analysis and simulation of the hybrid powertrain used in a scooter are fully described. The efficacy of the model was verified experimentally on a scooter chassis dynamometer and the performance of the proposed hybrid powertrain is studied using the developed model under a representative urban driving cycle. Finally, Simulation and experimental results confirm the feasibility and prosperity of the proposed hybrid HES and indicate that the designed hybrid system can improve the fuel consumption rate up to 15% compared with the original scooter.  相似文献   
384.
By using a self-designed non-thermal plasma (NTP) injection system, an experimental study of the regeneration of DPF was conducted at different temperatures, where oxygen as the gas source. The results revealed that PM can be decomposed to generate CO and CO2 by these active substances O3, O which was generated through the discharge reaction of NTP reactor. With the increasing of test temperature, the mass of C1 (C in CO) shows a overall downward trend while the mass of C2 (C in CO2) and C12 (C1 and C2) increase firstly and then decrease. When the test temperature is 80°C, the backpressure of DPF decreases fastest and the regenerative effect is remarkable. DPF can be regenerated by NTP technology without any catalyst at a lower temperature. Compared with the traditional regeneration method, the NTP technology has its superiority.  相似文献   
385.
This paper proposes a procedure to improve the design of an automobile crashworthiness using the deceleration pulse in a simplified form as a design variable. A complete vehicle in a full frontal crash was simulated to find its deceleration pulse by finite element method. Based on this deceleration pulse, sled tests were performed, also in a virtual environment. Comparisons between the real deceleration pulse and a simplified pulse were made based on the HIC15 produced. The simplified pulse is developed by dividing the pulse in three phases, each with a constant level of deceleration. Simulations were made to minimize the HIC15 changing parameters in the restraint system and in the deceleration pulse. An expression was found to relate HIC15 and the first phase of the deceleration pulse. A design case using this expression is presented. The benefits of using the pulse as a design variable along with the restraint system are accounted.  相似文献   
386.
The forward collision warning system, which warns danger to the driver after sensing possibility of crash in advance, has been actively studied recently. Such systems developed until now give a warning, regardless of driver’s driving propensity. However, it’s not reasonable to give a warning to every driver at the same time because drivers are different in driving propensity. In this study, to give a warning to each driver differently, three metrics classifying driver’s driving propensity were developed by using the driving data on a testing ground. These three metrics are the predicted time headway, required deceleration divided by the deceleration of the leading vehicle, and the resultant acceleration divided by the deceleration of the leading vehicle. Driving propensity was divided into 3 groups by using these metrics for braking and steering cases. In addition, these metrics were verified by making sure that braking propensity could be classified on public roads as well.  相似文献   
387.
This study presents the robust design optimization process of suspension system for improving vehicle dynamic performance (ride comfort, handling stability). The proposed design method is so called target cascading method where the design target of the system is cascaded from a vehicle level to a suspension system level. To formalize the proposed method in the view of design process, the design problem structure of suspension system is defined as a (hierarchical) multilevel design optimization, and the design problem for each level is solved using the robust design optimization technique based on a meta-model. Then, In order to verify the proposed design concept, it designed suspension system. For the vehicle level, 44 random variables with 3% of coefficient of variance (COV) were selected and the proposed design process solved the problem by using only 88 exact analyses that included 49 analyses for the initial meta-model and 39 analyses for SAO. For the suspension level, 54 random variables with 10% of COV were selected and the optimal designs solved the problem by using only 168 exact analyses for the front suspension system. Furthermore, 73 random variables with 10% of COV were selected and optimal designs solved the problem by using only 252 exact analyses for the rear suspension system. In order to compare the vehicle dynamic performance between the optimal design model and the initial design model, the ride comfort and the handling stability was analyzed and found to be improved by 16% and by 37%, respectively. This result proves that the suggested design method of suspension system is effective and systematic.  相似文献   
388.
PID plus fuzzy logic method for torque control in traction control system   总被引:1,自引:0,他引:1  
A Traction Control System (TCS) is used to control the driving force of an engine to prevent excessive slip when a vehicle starts suddenly or accelerates. The torque control strategy determines the driving performance of the vehicle under various drive-slip conditions. This paper presents a new torque control method for various drive-slip conditions involving abrupt changes in the road friction. This method is based on a PID plus fuzzy logic controller for driving torque regulation, which consists of a PID controller and a fuzzy logic controller. The PID controller is the fundamental component that calculates the elementary torque for traction control. In addition, the fuzzy logic controller is the compensating component that compensates for the abrupt change in the road friction. The simulation results and the experimental vehicle tests have validated that the proposed controller is effective and robust. Compared with conventional PID controllers, the driving performance under the proposed controller is greatly improved.  相似文献   
389.
390.
It is well known that in-cylinder flow is very important factor for the performance of SI engine. An appropriate in-cylinder flow pattern can enhance the turbulence intensity at spark time, therefore increasing the stability of combustion, reducing emission and improving fuel economy. In this paper, the effect of intake port design on in-cylinder flow is studied. It is found a vortex existed at the upper side of intake port of a production SI engine used in the study, during the intake stroke, which will reduce both tumble ratio and volumetric efficiency. A minor modification on intake port is made to eliminate the vortex and increase tumble ratio while keeping volumetric efficiency at the same level. It is demonstrated that the increase in tumble in the new design results in a 20 per cent increase in the fuel vaporization. In this study, both KIVA and STAR-CD are used to simulate the engine cold flow, as well as ICEM CFD and es-ice used as pre-processor respectively due to the complexity of engine geometry. Simulation results from KIVA and STAR-CD are compared and analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号