首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3123篇
  免费   22篇
公路运输   631篇
综合类   703篇
水路运输   1055篇
铁路运输   46篇
综合运输   710篇
  2023年   7篇
  2022年   28篇
  2021年   10篇
  2020年   5篇
  2019年   16篇
  2018年   368篇
  2017年   326篇
  2016年   285篇
  2015年   12篇
  2014年   69篇
  2013年   204篇
  2012年   128篇
  2011年   281篇
  2010年   272篇
  2009年   102篇
  2008年   236篇
  2007年   164篇
  2006年   30篇
  2005年   79篇
  2004年   54篇
  2003年   78篇
  2002年   39篇
  2001年   23篇
  2000年   16篇
  1999年   20篇
  1998年   24篇
  1997年   21篇
  1996年   26篇
  1995年   16篇
  1994年   10篇
  1993年   12篇
  1992年   15篇
  1991年   13篇
  1990年   14篇
  1989年   8篇
  1988年   10篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   8篇
  1982年   8篇
  1981年   12篇
  1980年   10篇
  1979年   12篇
  1978年   10篇
  1977年   7篇
  1976年   8篇
  1975年   11篇
  1973年   6篇
  1972年   4篇
排序方式: 共有3145条查询结果,搜索用时 15 毫秒
991.
In the designing stage of subsea pipelines, the design parameters, such as pipe materials, thickness and diameters, are carefully determined to guarantee flow assurance and structural safety. However, once corrosion occurs in pipelines, the operating pressure should be decreased to prevent the failure of pipelines. Otherwise, an abrupt burst can occur in the corroded region of the pipeline, and it leads to serious disasters in the environment and financial loss. Accordingly, the relationship between the corrosion amount and failure pressure of the pipeline, i.e., the maximum operating pressure, should be investigated, and then, the assessment guideline considering the failure pressure should be identified. There are several explicit type codes that regulate the structural safety for corroded subsea pipelines, such as ASME B31G, DNV RF 101, ABS Building and Classing Subsea Pipeline Systems, and API 579. These rules are well defined; however, there are some limitations associated with describing precise failure pressure. Briefly, all of the existing rules cannot consider the material nonlinearity, such as elastoplasticity effect of the pipeline, as well as the actual three-dimensional corrosion shape. Therefore, the primary aim of this study is to suggest a modified formula parameter considering the above-mentioned pipeline and corrosion characteristics. As a result, the material nonlinearity as well as the corrosion configuration, i.e., axial/circumferential corrosion length, width and depth, is reflected in a set of finite element models and a series of finite element analysis considering the operation conditions are followed. Based on the comparative study between the simulation and analytical results, which can be obtained from the classification society rules, the modified formulae for failure pressure calculation are proposed.  相似文献   
992.
The present paper reports on a hybrid analytical model consisting of a biological probability model and a physical impact model proposed to predict the cell viability ratio of a sterilization method for marine bacteria using microbubbles interacting with a shock wave. The physical impact model of interaction between a microbubble and a shock wave is developed on the basis of the bubble motion analysis with experimental pressure data and a one-dimensional numerical simulation. An underwater shock wave produced by microbubble motion is simulated using a second-order finite differential scheme by means of bubble surface velocity variation obtained from Herring’s bubble motion equation, and the radius of the sterilized space around a microbubble is estimated by the critical pressure that just causes cell wall damage of marine bacteria. The sterilization effect predicted by the present hybrid analysis shows a good agreement with the bio-experimental result.  相似文献   
993.
Based on the linear shallow water approximation, longitudinal and transverse oscillations in a rectangular harbor with a parabolic bottom are analyzed. The longitudinal ones are combinations of the Legendre functions of the first and second kinds and the transverse ones are expressed with modified Bessel equations. Analytic results for longitudinal oscillations show that the augmentation of rapidity of variation of the water depth shifts the resonant wave frequencies to larger values and slightly changes the positions of the nodes for the resonant modes. For the transverse oscillations trapped within the harbor which are typically standing edge waves, the dispersion relationship is derived and the spatial structures of the first four modes are presented. The solutions illustrate that all the trapped modes are affected by the varying water depth parameters, especially for the higher modes whose profiles extend farther and the distribution of the energy of transverse oscillations is influenced by the rapidity of variation of the bottom within the harbor.  相似文献   
994.
The influence of various parameters, such as ship initial speed (full ahead and lower engine loads), loading condition, heading angle and weather conditions on ship fuel consumption and CO2 emission is presented. A reliable methodology for estimating the attainable ship speed, fuel consumption and CO2 emission in different sea states is described. The speed loss is calculated by taking into account the engine and propeller performance in actual seas as well as the mass inertia of the ship. The attainable ship speed is obtained as time series. Correlation of speed loss with sea states allows predictions of propulsive performance in actual seas. If the computation is used for weather routing purposes, values for various ship initial speed, loading conditions and heading angles for each realistic sea‐state must be provided. The voluntary speed loss is taken into account. The influence of the ship speed loss on various parameters such as fuel consumption and CO2 emissions is presented. To illustrate the presented concept, the ship speed and CO2 emissions in various routes of the Atlantic Ocean are calculated using representative environmental design data for the track of the routes where the ship will sail.  相似文献   
995.
Strategies of fuel consumption onboard ships are of one of the crucial issues in marine shipping industry. Many of the relevant authorities maritime domain gave great interesting to that issue, either through research that discussed the impact of marine fuel consumption on the environment and economy of ships or through practical experiments’ that are made by marine engine manufacturers. Over the years, many solutions have been put forward to overcome this problem while maintaining the amount of goods transported globally at the same transfer rate and ship speed. The present paper sheds light on many of the methods used currently to reach this purpose. It is explained that applying a certain fuel-saving strategy will rely on some of the factors, especially the type of ship. Mainly two methods including: shore-side power and cold out of heat strategies have been investigated regarding adaption, economic, and environmental issues in case of applying onboard high-speed passenger ships.  相似文献   
996.
Wake alignment models are always included in the modern panel codes for marine propeller analysis. The wake alignment algorithms influence directly the rate of convergence and the accuracy of calculations. In the present work, firstly, four different numerical methods to implement the wake alignment algorithms for the steady calculation are described. They perform quite differently in terms of convergence history and convergence rate. The comparison with the other methods shows that the direct application of the unsteady method leads to a much slower convergence rate. Secondly, high-order numerical methods including second-order and fourth-order Runge–Kutta methods are introduced into the wake alignment, which results in high-order wake alignment algorithms. The analysis of the results shows that the high-order methods generate a different wake geometry from the low-order method. The thrust coefficient and torque coefficient have also been compared.  相似文献   
997.
Coastal zones are among the most productive areas in the world, offering a wide variety of valuable habitats and ecosystems services. Despite the low population density in the Brazilian coastal zone, their distribution is quite concentrated near some coastal cities and state capitals. This concentration places enormous pressure on coastal resources. Therefore, the main objective of this paper is to present an overview on the current status of SiMoCo (Sistema de Monitoramento Costeiro, or Coastal Monitoring System in English) project as a possible early warning system that can be integrated to the Brazilian Coastal Management Information System. This prototype platform provides a real-time access to the composition, organization and simulation of planktonic communities. First, our results demonstrate such a system detecting a target dinoflagellate; second, we apply structural and functional indexes to compare and characterize the ecological networks from two different coastal areas. Conclusions are made about SiMoCo’s feasibility and its possible contribution to the decision-making process within integrated coastal zone management (ICZM) strategies.  相似文献   
998.
In this paper, a mathematical model is developed for the maneuvering motion of a naval ship and bifurcations of its equilibrium are identified in roll-coupled motion. The subject ship is a high-speed surface combatant with twin-propeller twin-rudder system. Captive model tests are conducted for the ship using planar motion mechanism. Maneuvering coefficients are calculated by polynomial curve fitting of the test data. Uncertainty distribution in the coefficients is assumed same as that of the curve fitting errors. Uncertainty in the model coefficients is propagated to full-scale simulation results by the stochastic response surface method (SRSM). This method is computationally efficient as compared to standard Monte Carlo simulation technique. The SRSM uses polynomial chaos expansion of orthogonal to fit any probability distribution. Bifurcation analysis of the mathematical model is performed by varying the vertical center of gravity as the bifurcation parameter. Hopf bifurcation is identified. It is found that the bifurcations occur due to the coupling of roll motion with sway, yaw motion and rudder angle. In the presence of wind, roll angle response in bifurcation diagram is discussed.  相似文献   
999.
The development of robust damage detection methods for offshore structures is crucial to prevent catastrophes caused by structural failures. In this research, we developed an Improved Modal Strain Energy (IMSE) method for detecting damage in offshore platform structures based on a traditional modal strain energy method (the Stubbs index method). The most significant difference from the Stubbs index method was the application of modal frequencies. The goal was to improve the robustness of the traditional method. To demonstrate the effectiveness and practicality of the proposed IMSE method, both numerical and experimental studies were conducted for different damage scenarios using a jacket platform structure. The results demonstrated the effectiveness of the IMSE method in damage location when only limited, spatially incomplete, and noise-polluted modal data is available. Comparative studies showed that the IMSE index outperformed the Stubbs index and exhibited stronger robustness, confirming the superiority of the proposed approach.  相似文献   
1000.
Tendons vertically moor Tension-Leg Platforms (TLPs), thus, a deep understanding of physical tendon stresses requires the determination of the total axial deformation of the tendons, which is a combination of the heave, pitch, and surging responses. The vertical motion of the lateral sides of the TLP is coupled with surge and constitutes a portion of the pitch motion. Tendons are connected to the sides of the TLP; hence, the total displacement of the lateral sides is related to the total deformation of the tendons and the total axial stress. Therefore, investigating the total vertical response at the sides of the TLP is essential. The coupling between various degrees of freedom is not considered in the Response Amplitude Operator (RAO). Therefore, in frequency domain analysis, the estimated vertical RAO is incomplete. Also, in the time domain, only the heave motion at the center of TLP is typically studied; this problem needs to be addressed. In this paper, we investigate the portion of the pitch motion in the vertical response at the sides of the TLP in both the frequency and time domains. Numerical results demonstrate a significant effect of the pitch motion in the vertical motion of the edges of the TLP in some period ranges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号