首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
公路运输   2篇
综合类   1篇
水路运输   2篇
铁路运输   3篇
综合运输   5篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2002年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Perishable foods are frequently exposed to temperature abuse during transportation and distribution. The use of traditional data loggers do not permit the instantaneous data transmission that radio frequency technology offers. Temperature has a major impact on food quality and safety, particularly when long transit times are imposed. Consequently, using radio frequency identification (RFID) to track and monitor temperature in perishable shipments will bring significant benefits to the cold chain. The goal of this study was to determine the optimal RF antenna placement to achieve full RFID tag readability inside a sea container. Testing was made at two different frequencies (915 and 433 MHz) while the refrigeration unit was running at −25 °C and the container was fully loaded with frozen bread. The sea container was instrumented with eight RFID antennas, three of which were tuned for 433 MHz and five for 915 MHz. All antenna wires exited the container via the forward drain holes. The RFID readers were outside the container and connected to their respective antennas, one at a time. Thirty eight RFID tags were evenly distributed onto the pallets of frozen bread. All RFID tags were active tags capable of reading and recording temperature. Results at 915 MHz showed readability levels between 47% and 79%, with an average of 68.4%, whereas 433 MHz demonstrated 100% readability at all antenna positions. In conclusion, the 433 MHz RFID system appears suitable for real time temperature monitoring of frozen bread inside a sea container. This technology could be applied to other food items similar to frozen bread.  相似文献   
12.
OSCAR (Outil de Simulation du CAptage pour la Reconnaissance des défauts) is the pantograph–catenary dynamic software developed by Société Nationale des Chemins de fer Français (SNCF) since 2004. A three-dimensional finite element (FE) mesh allows the modelling of any catenary type: alternating current (AC) or direct current (DC) designs, and conventional or high-speed lines. It is a representative of the real overhead line geometry, with contact wire (CW) irregularities, staggered alignment of the CW, dropper spacing, wire tension, etc. Nonlinearities, such as slackening of droppers and unilateral contact between the pantograph and the CW, are taken into account. Several pantograph models can be used, with a complexity level growing from the three-lumped-mass model to the multibody model. In the second case, a cosimulation between the FE method catenary and the multibody pantograph models has been developed. Industrial features for pre- and post-treatments were developed to increase robustness of results and optimise computation time. Recent developments include volume meshing of the CW for stress computation or statistical analysis and lead to new fields of studies such as fatigue failure or design optimisation. OSCAR was fully validated against in-line measurements for its different AC and DC catenary models as well as its different pantograph models (with independent strips for instance) and has continuously been certified against EN50318 since 2008.  相似文献   
13.
Recently, publications aiming at wheel–rail contact surveys let readers think that multi-Hertzian methods present severe drawbacks with respect to ‘virtual penetration’ methods. These surveys criticise multi-Hertzian solutions mainly because presenting ‘larger contacts overlaps’ and ‘frequent secondary contacts near the border of the first contact’, both obvious geometric possibilities of which the practical occurrence and eventual inconvenience would remain purely theoretical unless established over definite methods demonstrating poor practical results. Recent surveys all quote Piotrowski–Chollet 2005 survey of wheel–rail contact models that attempted to illustrate defective multi-Hertzian techniques by concentrating on the method initiated by Sauvage in the 1990s and further developed by Pascal. The 2005 paper not only gives no evidence of practical inconveniences of Sauvage’s method but also confuses static geometric contact overlaps with the dynamical overlapping of forces. In reality it mixes Sauvage method up with a quite different technique. Thus a clarification is now necessary by reminding what the proper Sauvage technique really is and by showing some of its practical successful applications. The present paper, focusing on determination of normal contact forces in conformal situations, intends to explain clearly the advantages of the unequivocal localisation of secondary ellipses in that multi-Hertzian method which has been developed in INRETS VOCO codes in the 1990s and successfully used by SNCF and ALSTOM in the INRETS-SNCF code, VOCODYM, and later in Pascal’s online calculation of railway elastic contacts code. It proved its effectiveness for studying freight wagons derailments as well as rail wear and head-check, unrounded wheels wear, high-speed lines’ deformations or TGV comfort. While simulating American ACELA trainsets’ behaviour on the US North-East Corridor tracks, prior to actual tests, as part of the commercial contract. It has been also a major tool for bringing back together French and American Safety Standards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号