首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   5篇
公路运输   298篇
综合类   6篇
水路运输   97篇
铁路运输   3篇
综合运输   64篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   38篇
  2017年   26篇
  2016年   32篇
  2015年   10篇
  2014年   32篇
  2013年   50篇
  2012年   38篇
  2011年   48篇
  2010年   40篇
  2009年   44篇
  2008年   40篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   9篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有468条查询结果,搜索用时 171 毫秒
41.
This paper presents a fatigue design method for plug and ring type gas welded joints, which incorporates welding residual stress effects. A non-linear finite element analysis (FEA) was first performed to simulate the gas welding process. The numerically predicted residual stresses of the gas welds were then compared to experimental results measured using a hole drilling method. In order to evaluate the fatigue strength of the plug and ring type gas welded joints, a stress amplitude (σ a ) R taling the welding residual stress of the gas weld into account was introduced and is based on a modified Goodman equation incorporating the effect of the residual stress. Using the stress amplitude (σ a ) R , the ΔP-N f relations obtained from fatigue tests for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged into (σ a ) R -N f relations. It was found that the proposed stress amplitude (σ a ) R could provide a systematic and reasonable fatigue design criterion for the plug and ring type gas welded joints.  相似文献   
42.
Automotive general assembly requires many manual assembly operations to be carried out by human workers. Ergonomic analysis is an important part of the design and evaluation of products, jobs, tools, machines and environments for safe, comfortable and effective human functioning. Most recent researches have involved the evaluation of working conditions to prevent work-related musculoskeletal disorders. The majority of previous research on automotive companies has mainly considered the results of ergonomic analyses such as RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body Assessment) and OWAS (Ovako Working Posture Analysis System). Analysis of static posture including reachability, clearances for arm, hand and tool has also been used to evaluate working conditions. However, in addition to static posture analysis, a biomechanical analysis in dynamic conditions should also be conducted. There are no integrated frameworks or standard schema for ergonomic analysis using digital human models in digital environments. The purpose of this paper is to propose a new framework for the evaluation of working conditions by ergonomic and biomechanical analysis using digital models based on XML standard schema, including: products, processes, manufacturing resources and human workers. This paper presents the analysis results using the proposed framework for automotive general assembly operations. We propose a new framework for the evaluation of the assembly operations and their environments. Then we apply a digital human model to the dynamic simulation of general automotive assembly operations based on standard schemas in XML and PPRH (Product, Process, Resource and Human). Using PPRH information based on a standard XML schema to analyze the ergonomic and biomechanical results, the engineer can visualize, analyze and improve assembly operations and working environments in automotive general assembly shops using digital models.  相似文献   
43.
The objective of this paper is to improve the performance estimation model of the internal flow field of a torque converter. Compared with performance experiment results, the converter based on the one-dimensional model does not satisfy the performance requirements demanded in practice. Therefore, we need to develop more predictable and reliable performance estimation models. In order to obtain shape information on three-dimensional blade geometry, a process of reverse engineering conducts a torque converter assembly, impeller, turbine and stator. In addition, a CFD simulation including mesh generation and post-processing was carried out to extract equivalent parameters from the internal flow field. The internal flow field can be explained by analyze the correlation between a performance estimation model and CFD analysis. The equivalent performance model adopts the variation of energy loss coefficients for a given operating condition according to the application of a changing energy loss coefficient by the least mean squares method. The estimated equivalent model improves the agreement in performance between experiments and the theoretical model. This model can reduce the error to within about 3 percent. Furthermore, this procedure for predicted performance achieves eminence in the estimation of the capacity factor.  相似文献   
44.
Low viscosity engine oil can improve a vehicle’s fuel economy by decreasing the friction between the engine components. Frictional torque varies with the velocity change due to different viscosity characteristics of SAE grade 5W-20, 5W-30 and 5W-40 engine oils. The viscosity for each of these grades was measured to outline the effect low viscosity engine oils have on engine friction, which may lead to improved fuel economy. Engine oil seal frictional torque increases with the shaft rotational speed for all three engine oil grades. A decrease in engine oil seal frictional torque was confirmed when low viscosity engine oil was used. Also, the leak-free performance of the engine oil with the seal satisfied the life limit durability test criteria. Thus, low viscosity engine oil may be used to improve fuel economy by decreasing the frictional loss of the engine oil seal while having no negative impact on performance due to leak-free functioning.  相似文献   
45.
This paper describes the development of an optimal design process for a steering column system and supporting system. A design guide is proposed at the initial concept stage of the development process to obtain sufficient stiffness of the steering system while reducing the idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, where vibration modes among the systems are separated by applying a vibration mode map at the initial stage of the design process. This study also provides design guidelines for an optimal dynamic damper system using a CAE (computer aided engineering) analysis. The damper FE (finite element) model is added to the vehicle model to analyze the relation between the frequency and the sensitivity of the steering column system. This analysis methodology makes it possible to achieve target performance in the early design stage and reduction of damper tuning activity after the proto car test stage. Through the proposed steering column system development process, a lightweight vehicle with high stiffness is possible prior to the proto build stage. Furthermore, the improved process is expected to contribute to reducing the overall development period and the number of proto car tests necessary to achieve the desired steering system performance.  相似文献   
46.
This paper proposes a steering control method based on optimal control theory to improve the maneuverability of a six-wheeled vehicle during cornering. The six-wheeled vehicle is believed to have better performance than a four-wheeled vehicle in terms of its capability for crossing obstacles, off-road maneuvering and fail-safe handling when one or two of the tires are punctured. Although many methods to improve the four-wheeled vehicle’s lateral stability have been studied and developed, there have only been a few studies on the six-wheeled vehicle’s lateral stability. Some studies of the six-wheeled vehicle have been reported recently, but they are related to the desired yaw rate of a four-wheeled vehicle to control the six-wheeled vehicle’s maneuvering during corning. In this paper, the sideslip angle and yaw rate are controlled to improve the maneuverability during cornering by independent control of the steering angles of the six wheels. The desired yaw rate that is suitable for a six-wheeled vehicle is proposed as a control target. In addition, a scaled-down vehicle with six drive motors and six steering motors that can be controlled independently is designed. The performance of the proposed control methods is verified using a full model vehicle simulation and scaled-down vehicle experiment.  相似文献   
47.
The recursive component mode synthesis method (RCMS) has been implemented for the finite element analysis model of an automobile structure as an efficient free vibration analysis tool. The RCMS method is intended to obtain a better performance relative to the block Lanczos method, which is a traditional method in the industry of obtaining eigenvalues, while obtaining the acceptable accuracy. A numerical example of the automobile finite element model demonstrates the outstanding performance of RCMS compared to the block Lanczos method.  相似文献   
48.
In this paper, a robust sideslip angle controller based on the direct yaw moment control (DYC) is proposed for in-wheel motor electric vehicles. Many studies have demonstrated that the DYC is one of the effective methods to improve vehicle maneuverability and stability. Previous approaches to achieve the DYC used differential braking and active steering system. Not only that, the conventional control systems were commonly dependent on the feedback of the yaw rate. In contrast to the traditional control schemes, however, this paper proposes a novel approach based on sideslip angle feedback without controlling the yaw rate. This is mainly because if the vehicle sideslip angle is controlled properly, the intended sideslip angle helps the vehicle to pass through the corner even at high speed. On the other hand, the vehicle may become unstable because of the too large sideslip caused by unexpected yaw disturbances and model uncertainties of time-varying parameters. From this aspect, disturbance observer (DOB) is employed to assure robust performance of the controller. The proposed controller was realized in CarSim model described actual electric vehicle and verified through computer simulations.  相似文献   
49.
The passenger airbag (PAB) requires a large volume and fast deployment because of the large distance between the dashboard and the passenger. And various shapes and sizes of the PAB are required depending on the type of vehicle. However, since the PAB modeling process for each design change is complicated and time consuming, the design parameters of the PAB could not be well investigated. In this study, a unique feature-based CAD system has been proposed that easily constructs PAB CAD model and then generates PAB FE model for collision analysis. Main keypoints and widths of PAB that determine the shape and size have been extracted by analyzing the geometric-feature of airbag. The PAB CAD model can be easily constructed by inputting keypoints and widths information. Then, from the constructed PAB CAD model, the PAB FE model is automatically generated. Finally, the generated PAB FE model can be directly employed for collision analysis, thereby reducing the modeling time of the PAB and enabling efficient parametric studies on design.  相似文献   
50.
Three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures in a constant volume chamber. Fuels were injected into a high pressure/high temperature chamber under the same in-cylinder pressure and temperature conditions of low load in a GDCI (gasoline direct injection compression ignition) engine. Two injection pressures (40 MPa and 80 MPa), two ambient pressures (4.2 MPa and 1.7 MPa), and two ambient temperatures (908 K and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. Vapor developments of the two fuels were similar; however, different liquid developments were seen. At the same injection pressure and ambient temperature, gasoline liquid propagated more quickly and disappeared more rapidly than diesel liquid phase. At the low ambient temperature and pressure condition, gasoline and diesel sprays with higher injection pressures showed longer liquid lengths due to higher spray momentum. At the higher ambient temperature condition, the gasoline liquid length was shorter for the higher injection pressure. Higher volatility of gasoline is the main reason for this shorter liquid length under higher injection pressure and higher ambient temperature conditions. For a design of GDCI engine, it is necessary to understand the higher volatility of gasoline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号