首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2499篇
  免费   6篇
公路运输   709篇
综合类   90篇
水路运输   815篇
铁路运输   79篇
综合运输   812篇
  2022年   24篇
  2021年   20篇
  2020年   32篇
  2019年   21篇
  2018年   59篇
  2017年   64篇
  2016年   105篇
  2015年   34篇
  2014年   67篇
  2013年   391篇
  2012年   130篇
  2011年   134篇
  2010年   110篇
  2009年   118篇
  2008年   112篇
  2007年   86篇
  2006年   55篇
  2005年   56篇
  2004年   41篇
  2003年   42篇
  2002年   38篇
  2001年   43篇
  2000年   44篇
  1999年   36篇
  1998年   57篇
  1997年   41篇
  1996年   42篇
  1995年   55篇
  1994年   23篇
  1993年   32篇
  1992年   27篇
  1991年   24篇
  1990年   17篇
  1989年   17篇
  1988年   22篇
  1987年   23篇
  1986年   23篇
  1985年   19篇
  1984年   19篇
  1983年   15篇
  1982年   16篇
  1981年   18篇
  1980年   24篇
  1979年   26篇
  1978年   16篇
  1977年   16篇
  1976年   12篇
  1975年   22篇
  1974年   16篇
  1973年   10篇
排序方式: 共有2505条查询结果,搜索用时 15 毫秒
541.
在过去20年里,纽约州交通运输部(NYSDOT)已对全州1.74万公路桥梁的桥梁状况的检查和评价计划进行了管理和监督.该计划的首要目标是确保纽约的桥梁保持结构和运营安全,数据收集和报告是为桥梁所有者提供评估桥梁的状态和维护需求的主要信息来源.本文概述了纽约州交通部的桥梁检查和评价计划,包括项目范围、主要要求和特点、资源和数据应用.  相似文献   
542.
ABSTRACT

Autonomous vehicles (AVs) are expected to reshape travel behaviour and demand in part by enabling productive uses of travel time—a primary component of the “positive utility of travel” concept—thus reducing subjective values of travel time savings (VOT). Many studies from industry and academia have assumed significant increases in travel time use and reductions in VOT for AVs. In this position paper, I argue that AVs’ VOT impacts may be more modest than anticipated and derive from a different source. Vehicle designs and operations may limit activity engagement during travel, with AV users feeling more like car passengers than train riders. Furthermore, shared AVs may attenuate travel time use benefits, and productivity gains could be limited to long-distance trips. Although AV riders will likely have greater activity participation during travel, many in-vehicle activities today may be more about coping with commuting burdens than productively using travel time. Instead, VOT reductions may be more likely to arise from a different “positive utility”—subjective well-being improvements through reduced stresses of driving or the ability to relax and mentally transition. Given high uncertainty, further empirical research on the experiential, time use, and VOT impacts of AVs is needed.  相似文献   
543.
This paper investigates the effects of the track geometry irregularities on the wheel–rail dynamic interactions and the rail fatigue initiation through the application of the Dang Van criterion, that supposes an elastic shakedown of the structure. The irregularities are modelled, using experimental data, as a stochastic field which is representative of the considered railway network. The tracks thus generated are introduced as the input of a railway dynamics software to characterise the stochastic contact patch and the parameters on which it depends: contact forces and wheelset–rail relative position. A variance-based global sensitivity analysis is performed on quantities of interest representative of the dynamic behaviour of the system, with respect to the stochastic geometry irregularities and for different curve radius classes and operating conditions. The estimation of the internal stresses and the fatigue index being more time-consuming than the dynamical simulations, the sensitivity analysis is performed through a metamodel, whose input parameters are the wheel–rail relative position and velocity. The coefficient of variation of the number of fatigue cycles, when the simulations are performed with random geometry irregularities, varies between 0.13 and 0.28. In a large radius curve, the most influent irregularity is the horizontal curvature, while, in a tight curve, the gauge becomes more important.  相似文献   
544.
    
Active suspensions for railway vehicles have been a topic of research for a number of decades and while their applications in service operation are limited, it seems clear that they will in due course see widespread adoption. Railway suspension design is a problem of compromise on the non-trivial trade-off of ride quality versus track following (guidance), and the skyhook damping control approach has been paramount in illustrating the potential benefits. Since skyhook damping control, various advanced control studies appeared contributing to redefine the boundaries of the aforementioned trade-off. Yet there is no study on the impact of fractional order (FO) methods in the context of skyhook railway active suspensions and in particular related to skyhook damping control. This is the area to which this paper strongly contributes. We present findings from a current project on FO controllers for railway vehicles active suspensions, in particular work on the effect of FO methods in basic skyhook damping control schemes, i.e. pure and intuitively based skyhook. First, we present a brief review of conventional skyhook damping control and then proceed to a rigorous investigation of the impact of FO on the ride quality/track following trade-off. The relevant benefits from FO methods are appraised and new insights highlighted.  相似文献   
545.
    
Advanced empirical, and physical-based tyre models have proven to be accurate for simulating tyre dynamics; however, these tyre models typically require expensive and intensive tyre parameterisation. Recent research into wheeled unmanned ground vehicles requiring vertical force analysis has shown good results using a simple linear spring model for the tyre which demonstrate the continued use for simple tyre models; however, parameterisation of the tyre still remains a challenge when load test equipment is not available. This paper presents a cost-effective tyre vertical stiffness parameterisation procedure using only measured tyre geometry and air pressure for applications where high-fidelity tyre models are unnecessary. Vertical forces calculated through an air volume optimisation approach are used to estimate tyre vertical stiffness. Nine tyres from the literature are compared to evaluate the performance of the vertical force estimation and stiffness parameterisation algorithms. Experimental results on a pair of ATV tyres are also presented.  相似文献   
546.
    
In railway applications wear prediction in the wheel–rail interface is a fundamental matter in order to study problems such as wheel lifespan and the evolution of vehicle dynamic characteristic with time. However, one of the principal drawbacks of the existing methodologies for calculating the wear evolution is the computational cost. This paper proposes a new wear prediction methodology with a reduced computational cost. This methodology is based on two main steps: the first one is the substitution of the calculations over the whole network by the calculation of the contact conditions in certain characteristic point from whose result the wheel wear evolution can be inferred. The second one is the substitution of the dynamic calculation (time integration calculations) by the quasi-static calculation (the solution of the quasi-static situation of a vehicle at a certain point which is the same that neglecting the acceleration terms in the dynamic equations). These simplifications allow a significant reduction of computational cost to be obtained while maintaining an acceptable level of accuracy (error order of 5–10%). Several case studies are analysed along the paper with the objective of assessing the proposed methodology. The results obtained in the case studies allow concluding that the proposed methodology is valid for an arbitrary vehicle running through an arbitrary track layout.  相似文献   
547.
    
The lateral vehicle dynamics is defined by the effects of side forces at the front and rear axle. These forces are caused by the slip and camber angle at the individual tyres, which are results of the kinematics and compliances of the chassis. This paper extends the approach of the effective axle characteristics by Paceyka to the analytical expression of the axle cornering stiffness and the axle relaxation behaviour with the aim of the development of a chassis design process as it applies in the early design stage. The obtained expression is integrated into a single track model and validated against a full nonlinear two-track model. By this means of these analytical expressions for the axle cornering stiffness and the axle relaxation behaviour it is possible to directly calculate and analyse the effective slip angles for linear quasi-static and dynamic driving manoeuvres.  相似文献   
548.
    
The use of dynamic driving simulators is constantly increasing in the automotive community, with applications ranging from vehicle development to rehab and driver training. The effectiveness of such devices is related to their capabilities of well reproducing the driving sensations, hence it is crucial that the motion control strategies generate both realistic and feasible inputs to the platform. Such strategies are called motion cueing algorithms (MCAs). In recent years several MCAs based on model predictive control (MPC) techniques have been proposed. The main drawback associated with the use of MPC is its computational burden, that may limit their application to high performance dynamic simulators. In the paper, a fast, real-time implementation of an MPC-based MCA for 9 DOF, high performance platform is proposed. Effectiveness of the approach in managing the available working area is illustrated by presenting experimental results from an implementation on a real device with a 200?Hz control frequency.  相似文献   
549.
    
In past years, the application of magnetorheological (MR) and electrorheological dampers in vehicle suspension has been widely studied, mainly for the purpose of vibration control. This paper presents theoretical study to identify an appropriate semi-active control method for MR-tracked vehicle suspension. Three representative control algorithms are simulated including the skyhook, hybrid and fuzzy-hybrid controllers. A seven degrees-of-freedom tracked vehicle suspension model incorporating MR dampers has been adopted for comparison between the performance of the three controllers. The model differential equations are derived based on Newton's second law of motion and the proposed control methods are developed. The performance of each control method under bump and sinusoidal road profiles for different vehicle speeds is simulated and compared with the performance of the conventional suspension system in time and frequency domains. The results show that the performance of tracked vehicle suspension with MR dampers is substantially improved. Moreover, the fuzzy-hybrid controller offers an excellent integrated performance in reducing the body accelerations as well as wheel bounce responses compared with the classical skyhook and hybrid controllers.  相似文献   
550.
    
Train dwell time is one of the most unpredictable components of railway operations, mainly because of the varying volumes of alighting and boarding passengers. However, for reliable estimations of train running times and route conflicts on main lines, it is necessary to obtain accurate estimations of dwell times at the intermediate stops on the main line, the so‐called short stops. This is a great challenge for a more reliable, efficient and robust train operation. Previous research has shown that the dwell time is highly dependent on the number of boarding and alighting passengers. However, these numbers are usually not available in real time. This paper discusses the possibility of a dwell time estimation model at short stops without passenger demand information by means of a statistical analysis of track occupation data from the Netherlands. The analysis showed that the dwell times are best estimated for peak and off‐peak hours separately. The peak‐hour dwell times are estimated using a linear regression model of train length, dwell times at previous stops and dwell times of the preceding trains. The off‐peak‐hour dwell times are estimated using a non‐parametric regression model, in particular, the k‐nearest neighbor model. There are two major advantages of the proposed estimation models. First, the models do not need passenger flow data, which is usually impossible to obtain in real time in practice. Second, detailed parameters of rolling stock configuration and platform layout are not required, which makes the model more generic and eases implementation. A case study at Dutch railway stations shows that the estimation accuracy is 85.8%–88.5% during peak hours and 80.1% during off‐peak hours, which is relatively high. We conclude that the estimation of dwell times at short stop stations without passenger data is possible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号