首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3523篇
  免费   13篇
公路运输   819篇
综合类   940篇
水路运输   969篇
铁路运输   147篇
综合运输   661篇
  2023年   11篇
  2022年   38篇
  2021年   24篇
  2020年   14篇
  2019年   14篇
  2018年   369篇
  2017年   331篇
  2016年   369篇
  2015年   26篇
  2014年   33篇
  2013年   127篇
  2012年   174篇
  2011年   410篇
  2010年   383篇
  2009年   137篇
  2008年   307篇
  2007年   203篇
  2006年   84篇
  2005年   116篇
  2004年   56篇
  2003年   60篇
  2002年   27篇
  2001年   18篇
  2000年   21篇
  1999年   10篇
  1998年   20篇
  1997年   8篇
  1996年   9篇
  1995年   19篇
  1994年   4篇
  1993年   11篇
  1991年   8篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   8篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   6篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1973年   5篇
  1972年   2篇
排序方式: 共有3536条查询结果,搜索用时 31 毫秒
891.
It is well known that in-cylinder flow is very important factor for the performance of SI engine. An appropriate in-cylinder flow pattern can enhance the turbulence intensity at spark time, therefore increasing the stability of combustion, reducing emission and improving fuel economy. In this paper, the effect of intake port design on in-cylinder flow is studied. It is found a vortex existed at the upper side of intake port of a production SI engine used in the study, during the intake stroke, which will reduce both tumble ratio and volumetric efficiency. A minor modification on intake port is made to eliminate the vortex and increase tumble ratio while keeping volumetric efficiency at the same level. It is demonstrated that the increase in tumble in the new design results in a 20 per cent increase in the fuel vaporization. In this study, both KIVA and STAR-CD are used to simulate the engine cold flow, as well as ICEM CFD and es-ice used as pre-processor respectively due to the complexity of engine geometry. Simulation results from KIVA and STAR-CD are compared and analyzed.  相似文献   
892.
This study presents the robust design optimization process of suspension system for improving vehicle dynamic performance (ride comfort, handling stability). The proposed design method is so called target cascading method where the design target of the system is cascaded from a vehicle level to a suspension system level. To formalize the proposed method in the view of design process, the design problem structure of suspension system is defined as a (hierarchical) multilevel design optimization, and the design problem for each level is solved using the robust design optimization technique based on a meta-model. Then, In order to verify the proposed design concept, it designed suspension system. For the vehicle level, 44 random variables with 3% of coefficient of variance (COV) were selected and the proposed design process solved the problem by using only 88 exact analyses that included 49 analyses for the initial meta-model and 39 analyses for SAO. For the suspension level, 54 random variables with 10% of COV were selected and the optimal designs solved the problem by using only 168 exact analyses for the front suspension system. Furthermore, 73 random variables with 10% of COV were selected and optimal designs solved the problem by using only 252 exact analyses for the rear suspension system. In order to compare the vehicle dynamic performance between the optimal design model and the initial design model, the ride comfort and the handling stability was analyzed and found to be improved by 16% and by 37%, respectively. This result proves that the suggested design method of suspension system is effective and systematic.  相似文献   
893.
A numerical engine mapping methodology is proposed for the engine performance and fuel consumption map generation. An integrated model is developed by coupling a single cylinder GT-Power® engine model with a MATLAB/ Simulink® based boost system model to simulate a turbocharged diesel engine over the entire engine operating speed and load ranges within reasonable computational constraints. A single cylinder engine model with the built-in multi-zone combustion modeling option in GT-Power® is configured as a predictive engine model. The cycle averaged simulation result from the engine model is used as the boundary conditions of the boost system including intake and exhaust manifolds and a turbocharger. The boost system model developed in MATLAB/Simulink® platform calculates the intake and exhaust conditions which are fed back to the engine model. The integrated system model predicts the performance and fuel consumption of a turbocharged diesel engine with better predictive capability than mean value engine models. Its computational time is fast enough to simulate the engine over the entire engine operation range compared to multi-cylinder engine models.  相似文献   
894.
The paper presents an innovative method combining artificial neural networks (ANNs) with Fuzzy PID to demonstrate the advantages of this control approach for meeting both NOx emission requirements and NH3 slip targets. An ANN model was utilized to simulate the formation of NOx emissions under various engine operating conditions. Next, an effective closed-loop control strategy with a type of feedback known as fuzzy PID is adopted for on-line, real-time control of 32.5% aqueous urea dosing in the exhaust stream. The new strategy explores the benefits by simulation and testing in the environments of Matlab/Simulink and ESC/ETC, respectively. The notable achievement of considerable NOx reduction and an acceptably small NH3 slip is obtained based on this new, feasible and effective strategy.  相似文献   
895.
双层圆柱壳典型基座振动波传递特性优化分析   总被引:1,自引:0,他引:1  
采用波动分析法,根据不均质结构中的阻抗特性和波型转换,分析振动噪声在典型双层壳结构中的传递特性。以此为切入点,采用有限元/边界元(FEM/BEM)耦合法分析人为构造的传递损失基座的减振降噪性能。通过对组合板振动波的传递特性的分析可以得出,当定常结构发生突变时,结构阻抗也会随之发生变化,导致结构之间的阻抗失配,从而使得振动波在突变截面处发生反射和透射,降低振动波的传递效率,阻隔振动波能量向下游结构传递。然后,据此理论设计了传递损失基座,并用有限元/边界元耦合法验证了传递损失基座的减振降噪性能。  相似文献   
896.
Nanofluids, the fluid suspensions of nanomaterial, became a promising fluid that is invoked when heat transfer increase is required. Using of nanofluids as a coolant in the engine radiators is a crucial topic for the thermal engines manufactrers due to the expected enhancement in the cooling process. In this study, Two nanofluids (Al2O3/water and CuO/water) flowing in a flat tube of radiator are investigated numerically to evaluate thermal and flow performance. The resizing process for the radiator is performed by using nanofluid instead of water flow. A significant reduction in the radiator volume is achieved due to marked improvement in the heat transfer performance while, the required pumping power after this reduction in the volume is increased over that needed for base fluid. The normalized heat transfer (heat transfer to the pumping power) is found to be a function of both Reynolds number and nanofluid concentration ratio while the ratio of the normalized heat transfer is found to be dependent only on the nanofluid concentration ratio. These dependencies are formulated as general correlations.  相似文献   
897.
To reduce the aerodynamic drag, the performance of the underbody aerodynamic drag reduction devices was evaluated based on the actual shape of a sedan-type vehicle. An undercover, under-fin, and side air dam were used as the underbody aerodynamic drag reduction devices. In addition, the effects of the interactions based on the combination of the aerodynamic drag reduction devices were investigated. A commercial sedan-type vehicle was selected as a reference model and its shape was modeled in detail. Aerodynamic drag was analyzed by computational fluid dynamics at a general driving speed on highway of 120 km/h. The undercover reduced the slipstream area through the attenuation of the longitudinal vortex pair by enhancing the up-wash of underflow, thereby reducing the aerodynamic drag by 8.4 %. The under-fin and side air dam showed no reduction in aerodynamic drag when they were solely attached to the actual complex shape of the underbody. Simple aggregation of the effects of aerodynamic drag reduction by the individual device did not provide the accurate performance of the combined aerodynamic drag reduction devices. An additional aerodynamic drag reduction of 2.1 % on average was obtained compared to the expected drag reduction, which was due to the synergy effect of the combination.  相似文献   
898.
Lane and road recognition are essential for self-driving where GPS solution is inaccurate due to the signal block or multipath in an urban environment. Vision based lane or road recognition algorithms have been studied extensively, but they are not robust to changes in weather or illumination due to the characteristic of the sensor. Lidar is a sensor for measuring distance, but it also contains intensity information. The road mark on the road is made to look good with headlight at night by using a special paint with good reflection on the light. With this feature, road marking can be detected with lidar even in the case of changes in illumination due to the rain or shadow. In this paper, we propose equipping autonomous cars with sensor fusion algorithms intended to operate in a different weather conditions. The proposed algorithm was applied to the self-driving car EureCar (KAIST) in order to test its feasibility for real-time use.  相似文献   
899.
The secure socket layer/ transport layer security(SSL/TLS) handshake protocol uses public key cryptographic algorithms such as RSA for key establishment. Typically, public key cryptographic algorithm is computational intensive due to the modular multiplications. Therefore, SSL/TLS servers often become swamped while performing public key decryptions when the simultaneous requests increase quickly. A batch RSA decryption algorithm was proposed. The novel algorithm provides the reasonable response time and optimizes server performance significantly. The decryption speedup is proportional to the batch size b, for instance, the speedup factor is 4, while in Shacham's scheme the acceleration rate is only 2.5 when b = 4.  相似文献   
900.
The majority of bicycling in the US is for recreation rather than transportation purposes but few studies have examined the question of bicycling purpose. We use data from an online survey conducted in 2006 in six small cities in the western US to examine factors affecting bicycling for transportation compared to bicycling for recreation. The results indicate that individual, social-environment, and physical-environment factors have important influences on the balance between transportation and recreational bicycling and on miles of bicycling for each purpose. Bicycling comfort and an aversion to driving are associated with more transportation bicycling. A culture of utilitarian bicycling and short distances to destinations are also key factors for transportation bicycling. Bicycle infrastructure appears to play an indirect role through its effect on perceived bicycling safety and through the self-selection effect, by attracting bicycling-inclined people to bicycling-supportive communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号