首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
公路运输   1篇
水路运输   5篇
综合运输   24篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   12篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有30条查询结果,搜索用时 281 毫秒
21.
Milan Janić 《Transportation》2018,45(4):1101-1137
This paper deals with modelling the dynamic resilience of rail passenger transport networks affected by large-scale disruptive events whose impacts deteriorate the networks’ planned infrastructural, operational, economic, and social-economic performances represented by the selected indicators. The indicators of infrastructural performances refer to the physical and operational conditions of the networks’ lines and stations, and supportive facilities and equipment. Those of the operational performances include transport services scheduled along particular routes, their seating capacity, and corresponding transport work/capacity. The indicators of economic performances include the costs of cancelled and long-delayed transport services imposed on the main actors/stakeholder involved—the rail operator(s) and users/passengers. The indicators of social-economic performances reflect the compromised accessibility and consequent prevention of the user/passenger trips and their contribution to the local/regional/national Gross Domestic Product. Modeling resulted in developing a methodology including two sets of analytical models for: (1) assessing the dynamic resilience of a given rail network, i.e., before, during, and after the impacts of disruptive event(s); and (2) estimation of the indicators of particular performances as the figures-of-merit for assessing the network’s resilience under the given conditions. As such, the methodology could be used for estimating the resilience of different topologies of rail passenger networks affected by past, current, and future disruptive events, the latest according to the “what-if” scenario approach and after introducing the appropriate assumptions. The methodology has been applied to a past case—the Japanese Shinkansen HSR network affected by a large-scale disruptive event—the Great East Japan Earthquake on 11 March 2011.  相似文献   
22.
ABSTRACT

Critical infrastructure networks, such as transport and power networks, are essential for the functioning of a society and economy. The rising transport demand increases the congestion in railway networks and thus they become more interdependent and more complex to operate. Also, an increasing number of disruptions due to system failures as well as climate changes can be expected in the future. As a consequence, many trains are cancelled and excessively delayed, and thus, many passengers are not reaching their destinations which compromises customers need for mobility. Currently, there is a rising need to quantify impacts of disruptions and the evolution of system performance. This review paper aims to set-up a field-specific definition of resilience in railway transport and gives a comprehensive, up-to-date review of railway resilience papers. The focus is on quantitative approaches. The review analyses peer-reviewed papers in Web of Science and Scopus from January 2008 to August 2019. The results show a steady increase of the number of published papers in recent years. The review classifies resilience metrics and approaches. It has been recognised that system-based metrics tend to better capture effects on transport services and transport demand. Also, mathematical optimization shows a great potential to assess and improve resilience of railway systems. Alternatively, data-driven approaches could be potentially used for detailed ex-post analysis of past disruptions. Finally, several rising future scientific topics are identified, spanning from learning from historical data, to considering interdependent critical systems and community resilience. Practitioners can also benefit from the review to understand a common terminology, recognise possible applications for assessing and designing resilient railway transport systems.  相似文献   
23.
Parcel express service in many countries assumes door‐to‐door delivery of parcels and small packages in the fastest possible way. Delivery companies usually organize hub delivery networks, as flows between hubs are characterized by the economy of scale effect. At hubs, parcels are exchanged across vans, trucks, and planes. To organize parcel delivery in a specific region, the parcel delivery company must make appropriate decisions about the total number of parcel delivery hubs, their locations, and the allocation of demand for facilities' services to facilities. These issues are modeled in this paper as a multi‐objective problem. The model developed is based on compromise programming and genetic algorithms. We also demonstrate in the paper an interactive manner in which a defined problem can be solved. The proposed model could be implemented in large‐scale networks. The paper also shows a case study of parcel delivery service in Serbia. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
24.
The importance of hydroelastic analysis of large and flexible container ships of today is pointed out for structure design. A methodology for investigation of this challenging phenomenon is drawn up and a mathematical model is worked out. It includes the definition of ship geometry, mass parameters, structure stiffness, and combines ship hydrostatics, hydrodynamics, wave load, ship motion and vibrations. The modal superposition method is employed. Based on the presented theory, a computer program is developed and applied for hydroelastic analysis of a large container ship. The transfer functions for heave, pitch, roll, vertical and horizontal bending and torsion are presented. Rigid body and elastic responses are correlated.  相似文献   
25.
This paper proposes an alternative algorithm to solve the median shortest path problem (MSPP) in the planning and design of urban transportation networks. The proposed vector labeling algorithm is based on the labeling of each node in terms of a multiple and conflicting vector of objectives which deletes cyclic, infeasible and extreme-dominated paths in the criteria space imposing cyclic break (CB), path cost constraint (PCC) and access cost parameter (ACP) respectively. The output of the algorithm is a set of Pareto optimal paths (POP) with an objective vector from predetermined origin to destination nodes. Thus, this paper formulates an algorithm to identify a non-inferior solution set of POP based on a non-dominated set of objective vectors that leaves the ultimate decision to decision-makers. A numerical experiment is conducted using an artificial transportation network in order to validate and compare results. Sensitivity analysis has shown that the proposed algorithm is more efficient and advantageous over existing solutions in terms of computing execution time and memory space used.  相似文献   
26.
In this paper we study the problem of determining the optimum cycle and phase lengths for isolated signalized intersections. Calculation of the optimal cycle and green phase lengths is based on the minimization of the average control delay experienced by all vehicles that arrive at the intersection within a given time period. We consider under-saturated as well as over-saturated conditions at isolated intersections. The defined traffic signal timing problem, that belongs to the class of combinatorial optimization problems, is solved using the Bee Colony Optimization (BCO) metaheuristic approach. The BCO is a biologically inspired method that explores collective intelligence applied by honey bees during the nectar collecting process. The numerical experiments performed on some examples show that the proposed approach is competitive with other methods. The obtained results show that the proposed approach is capable of generating high-quality solutions within negligible processing times.  相似文献   
27.
Macro and micro road profiles are of significant importance for vehicular motion studies, reliable calculations of vehicle system properties, and ensuring vehicular safety. As such, road profiles should be considered carefully. Macro profiles consider the spatial geometry of the road (curves, longitudinal and lateral slopes) while micro profiles consider roughness in longitudinal and lateral directions. These profiles have random characteristics that can be quantified under onroad and off-road conditions using a road profiler. This paper presents an analysis of a new concept for a universal profiler without gyroscopic stabilizers.  相似文献   
28.
This paper outlines a simple model of passenger demand and its relation to the supply of air shuttle services. Five criteria are used to rank alternative shuttle services, with weights for each criteria developed using the entropy method. The technique for order preference by similarity (TOPSIS) is then used to combine the weighted criteria to arrive at the preferred alternative. The approach is applied to a major air corridor in Yugoslavia betwen Belgrade and Zagreb.  相似文献   
29.
Abstract

When disturbances make it impossible to realise the planned flight schedule, the dispatcher at the airline operational centre defines a new flight schedule based on airline policy, in order to reduce the negative effects of these perturbations. Depending on airline policy, when designing the new flight schedule, the dispatcher delays or cancels some flights and reassigns some flights to available aircraft. In this paper, a decision support system (DSS) for solving the airline schedule disturbances problem is developed aiming to assist decision makers in handling disturbances in real-time. The system is based on a heuristic algorithm, which generates a list of different feasible schedules ordered according to the value of an objective function. The dispatcher can thus select and implement one of them. In this paper, the possibilities of DSS are illustrated by real numerical examples that concern JAT Airways' flight schedule disturbances.  相似文献   
30.
At hub airports, dominant airlines/alliance coordinate their flights in time with the aim of increasing the number (and quality) of connections, thus producing a wave‐system in traffic schedules. This paper addresses the impact of concentrating aircraft into waves on airport apron capacity. Existing models for apron capacity estimation are based on the number of stands, stand occupancy time, and demand structure, differing between representative groups of aircraft served at an airport. Criteria for aircraft grouping are aircraft type and/or airline and/or type of service (domestic, international, etc.). Modified deterministic analytical models proposed in this paper also take into account the wave‐system parameters, as well as runway capacity. They include the impact of these parameters on the number of flights in wave, stand occupancy time, and consequently apron capacity. Numerical examples illustrate the difference between apron capacity for an origin–destination airport and a hub airport, under the same conditions; utilization of the theoretical apron capacity at a hub airport, given the wave‐system structure; and utilization of the apron capacity at a hub airport when point‐to‐point traffic is allowed to use idle stands. Furthermore, the influence of different assignment strategies for aircraft stands in the case of hub airports is also discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号