首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8120篇
  免费   111篇
公路运输   1880篇
综合类   595篇
水路运输   2565篇
铁路运输   767篇
综合运输   2424篇
  2023年   43篇
  2022年   113篇
  2021年   61篇
  2019年   85篇
  2018年   198篇
  2017年   124篇
  2016年   190篇
  2015年   93篇
  2014年   245篇
  2013年   1235篇
  2012年   342篇
  2011年   431篇
  2010年   276篇
  2009年   369篇
  2008年   336篇
  2007年   268篇
  2006年   230篇
  2005年   271篇
  2004年   294篇
  2003年   179篇
  2002年   147篇
  2001年   134篇
  2000年   138篇
  1999年   98篇
  1998年   129篇
  1997年   112篇
  1996年   138篇
  1995年   149篇
  1994年   84篇
  1993年   189篇
  1992年   160篇
  1991年   77篇
  1990年   83篇
  1989年   58篇
  1988年   74篇
  1987年   65篇
  1986年   59篇
  1985年   77篇
  1984年   73篇
  1983年   73篇
  1982年   73篇
  1981年   95篇
  1980年   68篇
  1979年   91篇
  1978年   56篇
  1977年   69篇
  1976年   53篇
  1975年   65篇
  1974年   50篇
  1973年   45篇
排序方式: 共有8231条查询结果,搜索用时 31 毫秒
291.
This article presents a study on the accuracy of the numerical determination of the friction and pressure resistance coefficients of ship hulls. The investigation was carried out for the KVLCC2 tanker at model- and full-scale Reynolds numbers. Gravity waves were neglected, i.e., we adopted the so-called double-model flow. Single-block grids with H–O topology were adopted for all the calculations. Three eddy viscosity models were employed: the one-equation eddy viscosity and the two-equation models proposed by Menter and the TNT version of the two-equation k-ω model. Verification exercises were performed in sets of nearly geometrically similar grids with different densities in the streamwise, normal, and girthwise directions. The friction and pressure resistance coefficients were calculated for different levels of the iterative error and for computational domains of different size. The results show that on the level of grid refinement used, it is possible to calculate the viscous resistance coefficients in H–O grids that do not match the ship contour with a numerical uncertainty of less than 1%. The differences between the predictions of different turbulence models were larger than the numerical uncertainty; however, these differences tended to decrease with increases in the Reynolds number. The pressure resistance was remarkably sensitive to domain size and far-field boundary conditions. Either a large domain or the application of a viscous–inviscid interaction procedure is needed for reliable results. This work was presented in part at the International Conference on Computational Methods in Marine Engineering—MARINE 2007, Barcelona, June 3–4, 2007.  相似文献   
292.
F. Tauber   《Journal of Marine Systems》2009,75(3-4):421-429
Two dumping test sites of dredged sediment (glacial till, mixed sediment with sand) in the south-western Baltic Sea were repeatedly investigated with sidescan sonar. The first survey was conducted before dumping, the second survey 1 week after dumping, and eight more surveys were run during the following three and a half years. Sidescan mosaics were calculated from raw data. Comparing the mosaics, it becomes obvious that the initial strong microrelief of the dumping sites vanishes with time. The heaps of dumped material were eroded. Coarse material remains at the surface, fine material fills in the gaps between the heaps. Fine sediment structures (filaments and aureoles) created by the dumping process, and elongated traces of dumped material outside the dumping places disappeared with time.  相似文献   
293.
Time-series samples of settling particles were collected in the water column of Gaoping (formerly spelled Kaoping) Submarine Canyon (KPSC) with two sediment traps on taut-line moorings deployed at two different depths (60 and 280 m) between May 26 and June 27, 2004. Average total polycyclic aromatic hydrocarbon (PAH) concentrations of upper and lower trap array samples were 310 ± 61 ng g− 1 dw (range: 200–440) and 240 ± 36 ng g− 1 dw (range: 180–290), respectively. Principal component analysis results suggest that PAH sources in the trap-collected particles included diesel vehicle/coal burning, diagenetic sources, and petroleum release. PAH downward fluxes based on settling particles were estimated to be 12–44 μg m− 2 d− 1. These values are higher than those reported in the literature for most coastal areas. During the sampling period, both traps were significantly tilted by tidal current and fluctuated vertically. The upper traps experienced greater vertical movements, thus their particle characteristics (e.g., POC, particle mass, and fine particle fraction) varied more than those of the lower traps. Hourly depth variations of the tilted sediment trap array were echoed by the corresponding total PAH concentrations. Moreover, the PAH composition of the collected particles was related to the flow direction and speed. These observations suggest that PAHs can be used as an effective chemical tracer for the transport of terrestrial and marine particulates in a complex aquatic environment like Gaoping (Kaoping) Submarine Canyon.  相似文献   
294.
The two-dimensional water entry of a bow-flare ship section with constant roll angle, or heel angle, was studied by using a boundary element method. The fully nonlinear free surface conditions and exact body boundary conditions were satisfied. Nonviscous flow separation from the knuckles of the section or from the curved bottom could be simulated. The numerical calculations were compared with existing experimental results. First, the effects of roll angle were investigated and then the characteristics associated with large roll angles were examined in particular. The evolution of the free surfaces and the pressure distributions on the section surface are illustrated and the influence of nonviscous flow separation from the leeward section surface is discussed.  相似文献   
295.
Characteristic flow patterns generated by macrozoobenthic structures   总被引:2,自引:2,他引:0  
A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s− 1 and 10 cm s− 1) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1–2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of food particle capture due to altered particle pathways and residence times, but also for the exchange of gases, solutes and spawn. The present results confirm previous studies on flow interaction effects of various biogenic structures, and they add a deeper level of detail for a better understanding of the fine-scale effects.  相似文献   
296.
Using three years (2003 to 2005) of MODIS-Aqua normalized water-leaving radiance at 551 nm this paper shows a fortnightly cycle in the Tagus estuary turbid plume. The Tagus estuary is one of the largest estuaries of the west coast of Europe and is located in the most populated area of Portugal, including the capital Lisbon. The turbid plume has been detected by the backscattering characteristics of the surface waters in the vicinity of the estuary mouth. In fortnightly scales, the turbid plume has smaller dimensions during and after neap tides and higher dimensions during and after spring tides. This is most probably associated with the fortnightly spring–neap tidal cycle and the consequent increase in turbidity inside the estuary during spring tides. During the summer weak spring tides (tidal amplitude approximately 2.5 m) no turbid plume is observed for an entire fortnightly cycle. Outside the summer months, precipitation, river discharge and winds, were found to increase the turbid area, but the fortnightly cycle appears to be superimposed on the large time-scale variability, and present throughout the year.  相似文献   
297.
We report on an intensive campaign in the summer of 2006 to observe turbulent energy dissipation in the vicinity of a tidal mixing front which separates well mixed and seasonally stratified regimes in the western Irish Sea. The rate of turbulent dissipation ε was observed on a section across the front by a combination of vertical profiles with the FLY dissipation profiler and horizontal profiles by shear sensors mounted on an AUV (Autosub). Mean flow conditions and stratification were obtained from a bed mounted ADCP and a vertical chain of thermistors on a mooring. During an Autosub mission of 60 h, the vehicle, moving at a speed of ~ 1.2 m s− 1, completed 10 useable frontal crossings between end points which were allowed to move with the mean flow. The results were combined with parallel measurements of the vertical profile of ε which were made using FLY for periods of up to 13 h at positions along the Autosub track. The two data sets, which show a satisfactory degree of consistency, were combined to elucidate the space–time variation of dissipation in the frontal zone. Using harmonic analysis, the spatial structure of dissipation was separated from the strong time dependent signal at the M4 tidal frequency to yield a picture of the cross-frontal distribution of energy dissipation. A complementary picture of the frontal velocity field was obtained from a moored ADCP and estimates of the mean velocity derived from the thermal wind using the observed density distribution. which indicated the presence of a strong (0.2 m s− 1) jet-like flow in the high gradient region of the front. Under neap tidal conditions, mean dissipation varied across the section by 3 orders of magnitude exceeding 10− 2 W m− 3 near the seabed in the mixed regime and decreasing to 10− 5 W m− 3. in the strongly stratified interior regime. The spatial pattern of dissipation is consistent in general form with the predictions of models of tidal mixing and does not reflect any strong influence by the frontal jet.  相似文献   
298.
Geophysical turbulence is strongly affected by the variation of the Coriolis parameter with latitude. This variation results in the so-called β-effect, which forces energy from small-scales to be transferred preferentially into zonal motions. This effect results in the formation of narrow jet-like zonal flows that dominate the dynamics and act as transport barriers. Here, laboratory experiments are used to reproduce this effect in decaying turbulent flows. An electromagnetic cell is used to generate an initial field of vorticity in a rotating tank. Under conditions of quasi-geostrophic flow, the β-effect is produced by depth variation of the flow instead of variation of the Coriolis parameter. The effects of changing the container geometry and the overall fluid depth on the production of jets are investigated. The results suggest that this laboratory configuration can be used to model jet formation in the oceans and that increasing fluid depth is a practical way to decrease viscous effects.  相似文献   
299.
A new higher order closure model for the stable boundary layer is presented and compared with Large Eddy Simulation data. The model includes numerical solutions for the mean values, second and third order moments equations. A satisfactory agreement is found between the calculated vertical profiles of the turbulent quantities with those provided by the LES. Furthermore the new model results are compared with profiles obtained with a lower order closure model in order to verify the effective importance of including third order dynamical equations in the model.  相似文献   
300.
We consider here surf zone turbulence measurements, recorded in the Eastern English Channel using a sonic anemometer. In order to characterize the intermittent properties of their fluctuations at many time scales, we analyze the experimental time series using the Empirical Mode Decomposition (EMD) method. The series is decomposed into a sum of modes, each one narrow-banded, and we show that some modes are associated with the energy containing wave breaking scales, and other modes are associated with small-scale intermittent fluctuations. We use the EMD approach in association with a newly developed method based on Hilbert spectral analysis, representing the probability density function in an amplitude–frequency space. We then characterize the fluctuations in a stochastic framework using a cumulant generating function for all scales, and compare the results obtained from direct and classical structure function analysis, to EMD–Hilbert spectral analysis results, showing that the former method saturates at large scales, whereas the latter method is more precise in its scale approach. These results show the strength of the new EMD–Hilbert spectral analysis method for data presenting a strong forcing such as found in shallow water, wave dominated situations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号