首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1452篇
  免费   10篇
公路运输   457篇
综合类   62篇
水路运输   468篇
铁路运输   42篇
综合运输   433篇
  2023年   4篇
  2022年   20篇
  2021年   16篇
  2020年   13篇
  2019年   13篇
  2018年   35篇
  2017年   43篇
  2016年   71篇
  2015年   25篇
  2014年   51篇
  2013年   215篇
  2012年   77篇
  2011年   84篇
  2010年   66篇
  2009年   82篇
  2008年   65篇
  2007年   56篇
  2006年   34篇
  2005年   32篇
  2004年   22篇
  2003年   25篇
  2002年   25篇
  2001年   22篇
  2000年   29篇
  1999年   20篇
  1998年   24篇
  1997年   26篇
  1996年   26篇
  1995年   41篇
  1994年   7篇
  1993年   22篇
  1992年   15篇
  1991年   14篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   7篇
  1980年   12篇
  1979年   14篇
  1978年   10篇
  1977年   6篇
  1975年   9篇
  1974年   7篇
  1972年   4篇
排序方式: 共有1462条查询结果,搜索用时 281 毫秒
221.
In combination, the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) and the Clean Air Act Amendments of 1990 (CAAA) are innovative and aggressive efforts to move US cities toward integrated transportation and air quality planning. Under these complementary laws, air quality has become a major national transportation goal. In areas with serious air pollution, air quality will be a major consideration in determining the future shape of urban transportation.This paper considers how the CAAA and ISTEA combine to provide an innovative national policy approach of interest to countries seeking to encourage sustainable development in urban centers. The CAAA mandates measurable and enforceable air quality targets. Nation-wide standards are set for acceptable levels of carbon monoxide, ground level ozone, and small particulates. ISTEA includes directions for transportation planners and decision-makers to follow to reach air quality and other goals — transportation planning must emphasize system efficiency, and for cities with severe air pollution, transportation projects are expected to contribute to cleaner air. Each urban area has flexibility in how it applies this framework to reflect its priorities and solve its problems. Strict federal sanctions provide incentives for compliance with both laws.Enactment of these laws has produced a period of transition and uncertainty as well as of challenge and opportunity for planners and elected officials. The next several years, the US will provide one national laboratory and over 100 different urban laboratories for innovative approaches to integrate transportation and environmental policies to resolve major urban problems.Abbreviations CAAA Clean Air Act Amendments of 1990 - CO Carbon monoxide - ECO Employee Commute Option - EPA US Environmental Protection Agency - HC Transportation hydrocarbons - I/M Inspections and maintenance program - ISTEA Intermodal Surface Transportation Efficiency Act of 1991 - MPO Metropolitan planning organizations - NOx Nitrogen oxides - PPM Parts per million - PM10 Small particulate matter - SIP State Implementation Plan - TIP Transportation Improvement Program - TCM Transportation control measures - VMT Vehicle miles traveled  相似文献   
222.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   
223.
The convergence of information and communication technologies (ICT) with automotive technologies has already resulted in automation features in road vehicles and this trend is expected to continue in the future owing to consumer demand, dropping costs of components, and improved reliability. While the automation features that have taken place so far are mainly in the form of information and driver warning technologies (classified as level I pre-2010), future developments in the medium term (level II 2010–2025) are expected to exhibit connected cognitive vehicle features and encompass increasing degree of automation in the form of advanced driver assistance systems. Although autonomous vehicles have been developed for research purposes and are being tested in controlled driving missions, the autonomous driving case is only a long term (level III 2025 +) scenario. This paper contributes knowledge on technological forecasts regarding automation, policy challenges for each level of technology development and application context, and the essential instrument of cost-effectiveness for policy analysis which enables policy decisions on the automation systems to be assessed in a consistent and balanced manner. The cost of a system per vehicle is viewed against its effectiveness in meeting policy objectives of improving safety, efficiency, mobility, convenience and reducing environmental effects. Example applications are provided that illustrate the contribution of the methodology in providing information for supporting policy decisions. Given the uncertainties in system costs as well as effectiveness, the tool for assessing policies for future generation features probabilistic and utility-theoretic analysis capability. The policy issues defined and the assessment framework enable the resolution of policy challenges while allowing worthy innovative automation in driving to enhance future road transportation.  相似文献   
224.
Improving pedestrian safety at intersections remains a critical issue. Although several types of safety countermeasures, such as reforming intersection layouts, have been implemented, methods have not yet been established to quantitatively evaluate the effects of these countermeasures before installation. One of the main issues in pedestrian safety is conflicts with turning vehicles. This study aims to develop an integrated model to represent the variations in the maneuvers of left-turners (left-hand traffic) at signalized intersections that dynamically considers the vehicle reaction to intersection geometry and crossing pedestrians. The proposed method consists of four empirically developed stochastic sub-models, including a path model, free-flow speed profile model, lag/gap acceptance model, and stopping/clearing speed profile model. Since safety assessment is the main objective driving the development of the proposed model, this study uses post-encroachment time (PET) and vehicle speed at the crosswalk as validation parameters. Preliminary validation results obtained by Monte Carlo simulation show that the proposed integrated model can realistically represent the variations in vehicle maneuvers as well as the distribution of PET and vehicle speeds at the crosswalk.  相似文献   
225.
In the majority of the researches presented so far for behavior analysis of complex structures with random loading and material properties, the applications rather than the analysis algorithms have been extended. The present paper is devoted to extending the probabilistic concepts to achieve a stochastic finite element-based consistent reliability algorithm that is more consistent with the design criteria. The proposed procedure is very general and may be employes for vehcle components with complex geometries and load conditions. However, beam-type vehicle components experience simultaneous spatially-random loading conditions and material properties are employed to clarify the proposed algorithm, without loss of the generality. In this regard, important concepts such as the displacement/stress level-crossing concept are incorporated. The stress stochastic formulations are proposed in the present paper, for the first time.  相似文献   
226.
Double-cantilever beam (DCB) and tapered double-cantilever beam (TDCB) specimens are the test configurations most commonly used to measure the fracture toughness of composites and adhesive joints. Strain rates of 1 to 18.47 m/s were applied to the test specimens via high-speed hydraulic test equipment. Because the fracture occurs through the adhesively bonded joints and the cracks grow rapidly, the crack length and beam displacement were recorded by a high-speed camera. An energy range from 0 to 10 J was often observed in the high-strain-rate fracture experiments for nonlinear plastic behavior of the dynamically loaded adhesively bonded DCB and TDCB specimens. The range of energy release rates (fracture energy) for TDCB specimen was 2 to 3 times higher than that of a DCB specimen for all high strain rates. The fracture energy of automotive adhesive joints can be estimated using the experimental results in this study for the fracture toughness (GIC) under high rates of loading. The crack grows as the applied fracture energy exceeds the value of the critical energy release rate (GIC) at the crack tip. The energy release rate was calculated using the fracture mechanics formula. The key fracture mechanics parameter, the fracture energy GIC, was ascertained as a function of the test rate and can be used to assess and model the overall joint performance.  相似文献   
227.
Finite element models of headforms are used in experimental simulations of pedestrian protection. In this study, a quick and accurate method for FE modeling of the headforms was developed. This method entailed the initial definition of the dimensional parameters for the mass, centroid, and inertial moment properties of the headform. The equations governing these properties were constructed using the dimensional parameters as design variables. The dimensional parameters meeting the requirements of the relevant regulations were obtained by solving these three equations. A design optimization model was constructed for the material parameters of the outer part of the headform. In this model, the parameters of the material used in the FE model were considered as design variables; the difference between the peak acceleration in a side-impact simulation test and the average value of the regulated acceleration range was used as the objective function; the first-order natural frequency, which was required to be greater than 5,000 Hz, was defined as one of the constraints; the peak drop acceleration, which was required to be within the regulated range of values, was defined as the second constraint. The material parameters were obtained by solving the optimization model. These material parameters meet the dynamic requirements of the regulations for headforms. Based on these three parameters, an FE model of a headform can be constructed quickly and accurately.  相似文献   
228.
The warm shrink fitting process is generally used to assemble automobile transmission parts (shafts/gears). However, this process causes a deformation in the addendum and dedendum of the gear depending on the fitting interference and gear profile, and this deformation causes additional noise and vibration between the gears. To address these problems, the warm shrink fitting process is analyzed by considering the error in the dimensional deformation of the addendum and dedendum found when comparing the results of a theoretical analysis and finite element analysis (FEA). A correction coefficient that reduces this error is derived through an analysis of the difference in the cross-sectional area between the shapes used for the theoretical analysis and that of the actual gear, and a closed-form equation to predict the dimensional deformation of the addendum and dedendum is proposed. The FEA method is proposed to analyze the thermal-structural-thermal coupled field analysis of the warm shrink fitting process (heating-fitting-cooling process). To verify the closed-form equation using the correction coefficient, measurements are made of actual helical gears used in automobile transmissions. The results are in good agreement with those given by the closed-form equation.  相似文献   
229.
Mixing over the steep side of the Cycladic Plateau in the Aegean Sea   总被引:2,自引:0,他引:2  
Intensive microstructure sampling over the southern slope of the Cycladic Plateau found very weak mixing in the pycnocline, centered on a thin minimum of diapycnal diffusivity with Kρ=1.5×10−6 m2 s− 1. Below the pycnocline, Kρ increased exponentially in the bottom 200 m, reaching 1 × 10− 4 m2 s− 1 a few meters above the bottom. Near-bottom mixing was most intense where the bottom slope equaled the characteristic slope of the semi-diurnal internal tide. This suggests internal wave scattering and/or generation at the bottom, a conclusion supported by near-bottom dissipation rates increasing following rising winds and with intensifying internal waves. Several pinnacles on the slope were local mixing hotspots. Signatures included a vertical line of strong mixing in a pinnacle's wake, an hydraulic jump or lee wave over a downstream side of the summit, and a ‘beam’ sloping upward at the near-inertial characteristic slope. Because dissipation rate averages were dominated by strong turbulence, ?/νN2 > 100, the effect on Kρ of alternate mixing efficiencies proposed for this range of turbulent intensity is explored.  相似文献   
230.
Part 2 of this two-part paper presents the analysis and validation results of local flow characteristics for a surface combatant Model 5415 bare hull under static and dynamic planar motion mechanism simulations. Unsteady Reynolds averaged Navier–Stokes (URANS) computations are carried out by a general-purpose URANS/detached eddy simulation research code CFDShip-Iowa Ver. 4. The objective of this research is to investigate the capability of the code in relation to the computational fluid dynamics-based maneuvering prediction method. In the current study, the ship is subjected to static drift, steady turn, pure sway and pure yaw motions at Froude number 0.28. The free surface, three dimensional vortical structure and, the validation of two dimensional local flow quantities together with the available experimental data are of the interest in the current study. Part 1 provides the verification and validation results of forces and moment coefficients, hydrodynamic derivatives, and reconstructions of forces and moment coefficients from resultant hydrodynamic derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号