首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3256篇
  免费   18篇
公路运输   870篇
综合类   696篇
水路运输   1001篇
铁路运输   33篇
综合运输   674篇
  2023年   4篇
  2022年   27篇
  2021年   6篇
  2020年   5篇
  2019年   11篇
  2018年   371篇
  2017年   337篇
  2016年   366篇
  2015年   8篇
  2014年   53篇
  2013年   172篇
  2012年   144篇
  2011年   354篇
  2010年   345篇
  2009年   91篇
  2008年   270篇
  2007年   154篇
  2006年   26篇
  2005年   78篇
  2004年   53篇
  2003年   76篇
  2002年   34篇
  2001年   20篇
  2000年   11篇
  1999年   14篇
  1998年   20篇
  1997年   19篇
  1996年   24篇
  1995年   13篇
  1994年   8篇
  1993年   10篇
  1992年   15篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   11篇
  1980年   10篇
  1979年   9篇
  1978年   8篇
  1977年   6篇
  1976年   8篇
  1975年   9篇
  1973年   5篇
  1972年   3篇
排序方式: 共有3274条查询结果,搜索用时 31 毫秒
181.
Most commercial vehicles such as buses and trucks use an air brake system, often equipped with an S-cam drum brake, to reduce their speed and/or to stop. With a drum brake system, the clearance between the brake shoe/pad and the brake drum may increase because of various reasons such as wearing of the brake shoe and/or brake drum and drum expansion caused by high heat generation during the braking process. Hence, to ensure proper functioning of the brake system, it is essential that the clearance between the brake shoe and the brake drum is monitored. In this paper, we present a mathematical model for the mechanical subsystem of the air brake system that can be used to monitor this clearance. This mathematical model correlates the push rod stroke transients and the brake chamber pressure transients. A kinematic analysis and a dynamic analysis of the mechanical subsystem of the air brake system were performed, and the results are corroborated with experimental data.  相似文献   
182.
183.
Numerical simulations of IC engines are of high interest for automotive engineers worldwide. The simulation models should be as fast as possible, low-computational effort and predictive tool. The correct prediction of turbulence level inside the combustion chamber of spark ignition engines is the most important factor influencing to the engine working cycle. This paper presents a development of the k-ε turbulence model applied to the commercial cycle-simulation software with the high emphasis on the intake part. The validation was performed on two engine geometries with the variation of engine speed and load comparing the cycle-simulation results of the turbulent kinetic energy and in-cylinder temperature with 3-D CFD results. In order to apply the cycle-simulation turbulence model for the simulation of entire engine map, the parameterization model of turbulence constants was proposed. The parameterized turbulence model was optimized using NLPQL optimization algorithm where the single set of turbulence model parameters for each engine was found. A good agreement of the turbulent kinetic energy during the expansion was achieved when the turbulence affects the flame front propagation and combustion rate as well.  相似文献   
184.
Uncontrolled expansion of combustion wave in spark ignited internal combustion engine causes knock effect which seriously degrades efficiency and lifetime of the engine. Thus, accurate knock detection and control are essential for obtaining a desired performance from the engine. Usually, knock sensor is used to detect this phenomenon but it has limited accuracy especially at engine high-speed rotations because of natural vibration and external noises. In this study an effective method based on Non-Local Mean (NLM) algorithm has been proposed to improve the knock detection accuracy. This method is evaluated based on four different indicators and four engine cylinders. The results show 52.9 % improvement in knock detection. Also feasibility of real time execution of this method based on embedded hardware has been studied.  相似文献   
185.
This paper describes a group of techniques for disaggregating origin–destination tables for travel forecasting that makes explicit use of observed traffic on a network. Five models within the group are presented, each of which uses nonlinear least-squares estimation to obtain row and column factors for splitting trip totals from and to larger geographical areas into smaller ones. The techniques are philosophically similar to Fratar factoring, although the solution method is quite different. The techniques are tested on a full-sized network for Northfield, MN and are found to work effectively.  相似文献   
186.
This paper analyzes the energetic performance of the hybrid Lexus RX 400h, through on-board measurements. Several speed profiles were analyzed, for three driving types, successive stop and go cycles, three speed profiles, crossing an electronic toll collection booth, and a roundabout. In stop and go situations the internal combustion engine did not work (the torque needed to impulse the vehicle in the stop and go situations was only supported by the electric engines), as well as in the situations of constant low speeds (50 or 60 km h?1). The auxiliary support given by the electric engines in the accelerations, as well as the importance of the energy regeneration system on the batteries’ load recovery is also demonstrated. When compared with similar conventional vehicles, the Lexus RX 400h has lower combined energy consumption between 1.2% and 60%.  相似文献   
187.
188.
A regional railroad network is presented to evaluate the system's response to increased coal traffic. An optimal, multimodal, coal-shipping pattern is developed for the study region to minimize total costs and to efficiently use the existing network. A two-stage, general model allocates resources among demands and then assigns flows to the network according to efficiency criteria. The model is sufficiently general to permit modification for specific needs, assumptions and data. Government agencies and industries can apply the model in resource allocation decisions and transportation policy analysis.  相似文献   
189.
Temperature is a very important factor controlling rolling resistance of road vehicle tyres. There are at least three different temperatures that may be considered as important factors controlling thermal conditions of the rolling tyre. The most common measure of the thermal conditions during tyre rolling is ambient air temperature. The other two are: pavement temperature and “tyre” temperature. Tyre temperature is the most difficult to establish, as temperatures of different parts of rolling tyres differ considerably, thus there is a problem to obtain representative values. In the authors’ opinion, air temperature is the most universal and reliable parameter to measure. The article presents results obtained in the Technical University of Gdańsk during laboratory and road measurements of different car tyres rolling on different pavements. The knowledge of rolling resistance characteristics is important for modelling car dynamics as well as fuel consumption. It is also necessary to establish proper test conditions in the future standardized on-road method of measuring rolling resistance. The results indicate that generally each tyre and pavement combination is influenced by the air temperature in a unique way, but at the same it is possible to propose some general influence factors that may be used to normalize measurements to the standard temperature of 25 °C.  相似文献   
190.
Head on bonnet impact is becoming more and more important in automotive design as regulations on pedestrian safety become more demanding. Despite the relatively low amount of energy involved, these impacts are truly dynamic phenomena as the event duration is comparable with the traveling time of the different wavefronts generated by the impact. In this paper, we show that we can build up a simplified model for the impact based on wave propagation analysis. Using this model, we can analyze head acceleration on existing bonnets or predict it on new ones. Head acceleration in a bonnet impact can thus be estimated over the whole area of the bonnet with a few minutes of CPU.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号