首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
综合运输   24篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有24条查询结果,搜索用时 156 毫秒
11.
The development and initial validation results of a micro-simulator for the generation of daily activity-travel patterns are presented in this paper. The simulator assumes a sequential history and time-of-day dependent structure. Its components are developed based on a decomposition of a daily activity-travel pattern into components to which certain aspects of observed activity-travel behavior correspond, thus establishing a link between mathematical models and observational data. Each of the model components is relatively simple and is estimated using commonly adopted estimation methods and existing data sets. A computer code has been developed and daily travel patterns have been generated by Monte Carlo simulation. Study results show that individuals' daily travel patterns can be synthesized in a practical manner by micro-simulation. Results of validation analyses suggest that properly representing rigidities in daily schedules is important in simulating daily travel patterns. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
12.
Transportation - Travel model systems often adopt a single decision structure that links several activity-travel choices together. The single decision structure is then used to predict...  相似文献   
13.
Obtaining attribute values of non‐chosen alternatives in a revealed preference context is challenging because non‐chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non‐chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non‐chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non‐chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non‐chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
14.

Volume Contents

Contents Volume 29 2002  相似文献   
15.
16.
The notion of time-space prisms has often been used in the context of describing activity-travel patterns of individuals. This paper presents a methodology for estimating the temporal vertices of time-space prisms using the stochastic frontier modeling technique. Observed trip starting and ending times are used as dependent variables and socio-economic characteristics and commute characteristics serve as independent variables. The models are found to offer plausible results indicating that temporal vertices of time-space prisms, though unobservable, can be estimated based on temporal characteristics of observed activity-travel patterns. Comparisons of stochastic frontier models of prism vertices and the distributions of prism vertices are presented using two activity data sets collected in the United States – San Francisco and Miami. Differences and similarities in temporal vertex locations are highlighted in the paper.  相似文献   
17.
18.
This paper presents a detailed analysis of discretionary leisure activity engagement by children. Children’s leisure activity engagement is of much interest to transportation professionals from an activity-based travel demand modeling perspective, to child development professionals from a sociological perspective, and to health professionals from an active lifestyle perspective that can help prevent obesity and other medical ailments from an early age. Using data from the 2002 Child Development Supplement of the Panel Study of Income Dynamics, this paper presents a detailed analysis of children’s discretionary activity engagement by day of week (weekend versus weekday), location (in-home versus out-of-home), type of activity (physically active versus passive), and nature of activity (structured versus unstructured). A mixed multiple discrete-continuous extreme value model formulation is adopted to account for the fact that children may participate in multiple activities and allocate positive time duration to each of the activities chosen. It is found that children participate at the highest rate and for the longest duration in passive unstructured leisure activities inside the home. Children in households with parents who are employed, higher income, or higher education were found to participate in structured outdoor activities at higher rates. The child activity modeling framework and methodology presented in this paper lends itself for incorporation into larger activity-based travel model systems where it is imperative that children’s activity-travel patterns be explicitly modeled—both from a child health and well-being policy perspective and from a travel forecasting perspective.
Chandra R. Bhat (Corresponding author)Email:

Ipek N. Sener   is currently a Ph.D. candidate in transportation engineering at The University of Texas at Austin. She received her M.S. degrees in Civil Engineering and in Architecture, and her B.S. degree in Civil Engineering from the Middle East Technical University in Ankara, Turkey. Rachel B. Copperman   is currently a Ph.D. student at The University of Texas at Austin in transportation engineering. She received her M.S.E. from The University of Texas at Austin in Civil Engineering and her B.S. from the University of Virginia in Systems Engineering. Rachel grew up in Arlington, Virginia. Ram M. Pendyala   is a Professor in Transportation at Arizona State University in Tempe. He teaches and conducts research in activity-based travel behavior modeling, multimodal transportation planning, and travel demand forecasting. He is the chair of the Transportation Research Board Committee on Traveler Behavior and Values and vice chair of the International Association for Travel Behaviour Research. Chandra R. Bhat   is a Professor in Transportation at The University of Texas at Austin. He has contributed toward the development of advanced econometric techniques for travel behavior analysis, in recognition of which he received the 2004 Walter L. Huber Award and the 2005 James Laurie Prize from the American Society of Civil Engineers (ASCE), and the 2008 Wilbur S. Smith Distinguished Transportation Educator Award from the Institute of Transportation Engineers (ITE). He is the immediate past chair of the Transportation Research Board Committee on Transportation Demand Forecasting and the International Association for Travel Behaviour Research.  相似文献   
19.
20.
Activity-travel behavior research has hitherto focused on the modeling and understanding of daily time use and activity patterns and resulting travel demand. In this particular paper, an analysis and modeling of weekly activity-travel behavior is presented using a unique multi-week activity-travel behavior data set collected in and around Zurich, Switzerland. The paper focuses on six categories of discretionary activity participation to understand the determinants of, and the inter-personal and intra-personal variability in, weekly activity engagement at a detailed level. A panel version of the Mixed Multiple Discrete Continuous Extreme Value model (MMDCEV) that explicitly accounts for the panel (or repeated-observations) nature of the multi-week activity-travel behavior data set is developed and estimated on the data set. The model also controls for individual-level unobserved factors that lead to correlations in activity engagement preferences across different activity types. To our knowledge, this is the first formulation and application of a panel MMDCEV structure in the econometric literature. The analysis suggests the high prevalence of intra-personal variability in discretionary activity engagement over a multi-week period along with inter-personal variability that is typically considered in activity-travel modeling. In addition, the panel MMDCEV model helped identify the observed socio-economic factors and unobserved individual specific factors that contribute to variability in multi-week discretionary activity participation.
Kay W. AxhausenEmail:

Erika Spissu   is currently a Research Fellow at the University of Cagliari (Italy). She received her Ph.D. from the University of Palermo and University of Cagliari (Italy) in Transport techniques and economics. She spent the past 2 years at the University of Texas at Austin as a Research Scholar focusing primarily in activity-based travel behavior modeling, time use analysis, and travel demand forecasting. Abdul Rawoof Pinjari   is an Assistant Professor in the Department of Civil and Environmental Engineering at the University of South Florida, Tampa. His research interests include time-use and travel-behavior analysis, and activity-based approaches to travel-demand forecasting. He has his Ph.D. from the University of Texas at Austin. Chandra R. Bhat   is a Professor in Transportation at The University of Texas at Austin. He has contributed toward the development of advanced econometric techniques for travel behavior analysis, in recognition of which he received the 2004 Walter L. Huber Award and the 2005 James Laurie Prize from the American Society of Civil Engineers (ASCE), and the 2008 Wilbur S. Smith Distinguished Transportation Educator Award from the Institute of Transportation Engineers (ITE). He is the immediate past chair of the Transportation Research Board Committee on Transportation Demand Forecasting and the International Association for Travel Behaviour Research. Ram M. Pendyala   is a Professor of Transportation Systems in the Department of Civil, Environmental, and Sustainable Engineering at Arizona State University. He teaches and conducts research in travel behavior analysis, travel demand modeling and forecasting, activity-based microsimulation approaches, and time use. He specializes in integrated land use—transport models, transport policy formulation, and public transit planning and design. He is currently the Vice-Chair of the International Association for Travel Behavior Research and is the immediate past chair of the Transportation Research Board Committee on Traveler Behavior and Values. He has his PhD from the University of California at Davis. Kay W. Axhausen   is a Professor of Transport Planning at the Swiss Federal Institute of Technology (ETH) Zurich. Prior to his appointment at ETH, he worked at the Leopold Franzens University of Innsbruck, Imperial College London and the University of Oxford. He has been involved in the measurement and modelling of travel behaviour for the last 25 years, contributing especially to the literature on stated preferences, microsimulation of travel behaviour, valuation of travel time and its components, parking behaviour, activity scheduling and travel diary data collection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号