首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3850篇
  免费   28篇
公路运输   977篇
综合类   733篇
水路运输   1226篇
铁路运输   57篇
综合运输   885篇
  2023年   11篇
  2022年   44篇
  2021年   16篇
  2020年   7篇
  2019年   21篇
  2018年   390篇
  2017年   341篇
  2016年   339篇
  2015年   21篇
  2014年   102篇
  2013年   323篇
  2012年   162篇
  2011年   328篇
  2010年   314篇
  2009年   139篇
  2008年   288篇
  2007年   175篇
  2006年   47篇
  2005年   96篇
  2004年   68篇
  2003年   85篇
  2002年   42篇
  2001年   30篇
  2000年   37篇
  1999年   25篇
  1998年   29篇
  1997年   31篇
  1996年   37篇
  1995年   35篇
  1994年   17篇
  1993年   25篇
  1992年   27篇
  1991年   19篇
  1990年   15篇
  1989年   9篇
  1988年   14篇
  1987年   9篇
  1986年   13篇
  1985年   15篇
  1984年   11篇
  1982年   10篇
  1981年   14篇
  1980年   13篇
  1979年   14篇
  1978年   12篇
  1977年   9篇
  1976年   11篇
  1975年   15篇
  1974年   6篇
  1973年   9篇
排序方式: 共有3878条查询结果,搜索用时 265 毫秒
951.
The Autonomous Emergency Braking (AEB) systems have been actively studied for the safety enhancement and commercialized for the past few years. Because the driver tends to overly rely upon active safety systems, AEB needs to be designed to reflect the real road situations such as various road slope and friction coefficient. In this study, an AEB control algorithm is proposed to compensate for the effects of the slope and the friction of road. Based on the maximum possible deceleration for the real road conditions, the minimum braking distance is described with margin parameters for AEB activation control. The deceleration controller with a feedforward term is designed to avoid the collision during AEB operation on real road conditions. The proposed algorithm is validated in simulations first and the experimental verification is performed in the various slope conditions.  相似文献   
952.
An advanced driver assistance system (ADAS) uses radar, visual information, and laser sensors to calculate variables representing driving conditions, such as time-to-collision (TTC) and time headway (THW), and to determine collision risk using empirically set thresholds. However, the empirically set threshold can generate differences in performance that are detected by the driver. It is appropriate to quickly relay collision risk to drivers whose response speed to dangerous situations is relatively slow and who drive defensively. However, for drivers whose response speed is relatively fast and who drive actively, it may be better not to provide a warning if they are aware of the collision risk in advance, because giving collision warnings too frequently can lower the reliability of the warnings and cause dissatisfaction in the driver, or promote disregard. To solve this problem, this study proposes a collision warning system (CWS) based on an individual driver’s driving behavior. In particular, a driver behavior model was created using an artificial neural network learning algorithm so that the collision risk could be determined according to the driving characteristics of the driver. Finally, the driver behavior model was learned using actual vehicle driving data and the applicability of the proposed CWS was verified through simulation.  相似文献   
953.
In designing a parallel hybrid electric vehicle, it is essential to select the optimal capacity of power sources and the optimal gear ratio of the torque coupler. The capacity of the power sources and the gear ratio of the torque coupler should be optimized simultaneously. However, since this process is excessively time-consuming, previous studies have selected the gear ratio of the torque coupler and then selected the capacity of power source. However, this approach cannot guarantee global optimization. In this paper, a feasible region is defined to satisfy the required performance of vehicle such as maximum speed, hill-climbing. and feasible points are selected inside the feasible region. In the conventional technique, the global optimal solution is obtained by simulating all feasible points. In the optimization technique, optimal points are simulated within the feasible region using several optimal search algorithms, such as the golden section search algorithm and the hillclimbing search algorithm. And using these algorithms, the number of simulations is reduced and the capacity of the power source and the gear ratio of the torque coupler are optimized simultaneously. Finally, the validity of the component sizing results is verified by comparing the global optimal solution obtained by applying the conventional technique with the solution obtained by applying the proposed optimization technique.  相似文献   
954.
Bus rollover accidents are receiving increasing attention due to the associated high fatality rate. In order to improve the bus structural performance during the rollover collision, it is necessary to investigate how the impact force is transferred within the bus superstructure. This paper introduced a method for studying the load transfer behavior of the bus superstructure during the standard rollover test by using the U * M index. A bus bay section was used as the sample structure to demonstrate the proposed method. The result of the paper reveals that the load transfer analysis based on the U * M index can provide engineers with the insight of the structural issues and the direction to improve the structural performance, which cannot be accomplished through the conventional finite element analysis.  相似文献   
955.
As for the tire analysis, lateral tire force is a fundamental factor that describes the stability of vehicle handling. Attempts to analyze the vehicle stability have been made based on various objective test methods and some specific factors such as yaw, lateral acceleration and roll angle. However, the problem to identify which axle is lack of the tire grip at a certain situation still remains. Since indoor tire force measurement system cannot represent a real road and vehicle conditions, tire force measurement through a real vehicle test is inevitable. Due to the high price of the tire force measurement device, tire force estimator can be an alternative toward cost reduction and device failure. In this paper, nonlinear planar full car model combined with tire model is proposed. Then, using discrete-time extended Kalman-Bucy filter (EKBF), individual tire lateral force are estimated with modified relaxation length model.  相似文献   
956.
In this paper, a Field Programmable Gate Array (FPGA) was used to implement a real-time cylinder pressure analysis. The goal of the project was to improve the accuracy of calculated heat release and center of combustion calculations to enhance the precision of engine control functions. Compared to today’s real-time pressure analysis systems, several additional physical effects were taken into account for this objective. The wall heat transfer was calculated based on the approach published by Hohenberg. A chemical equilibrium with six substances was assumed for the mixture composition and a real-time calculation method was developed. Furthermore, a two-zone model was adapted and implemented for this realtime analysis. The validation of the results and the rating of the improvement in precision were based on GT-SUITE simulation results as an offline reference tool. Compared to state-of-the-art analysis systems, it was possible to reduce the average error of the center of combustion position from 1.6° to 0.5° crank angle (CA) by taking the investigated effects into account. Moreover, it was possible to significantly reduce the time required for the calculation from one complete combustion cycle to 0.2°CA at an engine speed of 3,000 rpm by using a continuous calculation method on the FPGA. This led to an additional improvement of the ability to control the engine, especially under highly dynamic operation conditions.  相似文献   
957.
A roof crush test has been utilized to reduce passengers’ injuries from a vehicle rollover. The Federal Motor Vehicle Safety Standards (FMVSS) 216 and the Insurance Institute for Highway Safety (IIHS) perform actual vehicle tests and evaluate the vehicle’s ratings. Nonlinear dynamic response structural optimization can be employed not only for achievement of a high rating but also minimization of the weight. However, the technique needs a huge computation time and cost because many nonlinear dynamic response analyses are required in the time domain. A novel method is proposed for nonlinear dynamic response structural optimization regarding the roof crush test. The process of the proposed method repeats the analysis domain and the design domain until the convergence criteria are satisfied. In the analysis domain, the roof crush test is simulated using a high fidelity model of nonlinear dynamic finite element analysis. In the design domain, a low fidelity model of linear static response structural optimization is utilized with enforced displacements that come from the analysis domain. Correction factors are employed to compensate the differences between a nonlinear dynamic analysis response and a linear static analysis response with enforced displacement. A full-scale vehicle problem is optimized with a constraint on the rigid wall force from the analysis in the design domain.  相似文献   
958.
This paper presents a method to select the actuator combination in integrated chassis control using Taguchi method. Electronic stability control (ESC), active front and rear steering (AFS/ARS) are used as an actuator, which is needed to generate a control tire force. After computing the control yaw moment in the upper-level controller, it is distributed into the control tire forces, generated by ESC, AFS and ARS in the lower-level controller. In this paper, the weighted pseudo-inverse control allocation (WPCA) with variable weights is used to determine the control tire forces of each actuator. Taguchi method is adopted for sensitivity analysis on variable weights of WPCA in terms of the control performances such as the maneuverability and the lateral stability. For sensitivity analysis, simulation is performed on a vehicle simulation package, CarSim. From sensitivity analysis, the most effective actuator combination is selected.  相似文献   
959.
Recently, to improve vehicle fuel economy, as well as the performance of internal combustion engines, optimized system matching between a vehicle’s drivetrain and engine has become a very important technical issue. For this reason, the need for simulation research on engine and vehicle performance improvement has increased. But in general, since both engine simulation and vehicle simulation require initial engine calibration map input, a simple engine calibration method is required for the efficient configuration of various virtual engine calibration map setups. On this background, in this study, an example of waste gate turbocharger (WGT) cooled — exhaust gas recirculation (EGR) Diesel engine calibration using a test-based mean value engine model is presented as a suitable engine calibration map setting method. Also, the feasibility of an engine calibration model is confirmed through various engine tests. Using the simple model presented here, it is possible for diverse engine operating conditions and engine performance maps to be acquired.  相似文献   
960.
在现有感应控制二次过街系统中,道路两边以及安全岛按钮控制多为分开控制,没有相互协调,行人在安全岛等待时间过长易导致违章过街等问题。在一次过街感应控制算法基础上,结合二次过街相关理论、机动车与行人延误机理以及行人过街信号配时理论,提出"人行绿波"协调思路,对路段二次过街感应控制算法进行设计,并应用Vissim软件进行仿真验证,结果显示设计感应控制算法能有效地降低行人和机动车延误。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号