首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1444篇
  免费   12篇
公路运输   454篇
综合类   61篇
水路运输   466篇
铁路运输   42篇
综合运输   433篇
  2023年   4篇
  2022年   20篇
  2021年   13篇
  2020年   12篇
  2019年   13篇
  2018年   35篇
  2017年   43篇
  2016年   71篇
  2015年   25篇
  2014年   51篇
  2013年   215篇
  2012年   78篇
  2011年   84篇
  2010年   66篇
  2009年   82篇
  2008年   65篇
  2007年   56篇
  2006年   34篇
  2005年   32篇
  2004年   22篇
  2003年   23篇
  2002年   25篇
  2001年   22篇
  2000年   30篇
  1999年   20篇
  1998年   23篇
  1997年   26篇
  1996年   25篇
  1995年   41篇
  1994年   7篇
  1993年   22篇
  1992年   15篇
  1991年   14篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   7篇
  1980年   12篇
  1979年   14篇
  1978年   10篇
  1977年   6篇
  1975年   9篇
  1974年   7篇
  1972年   4篇
排序方式: 共有1456条查询结果,搜索用时 15 毫秒
131.
Finite element modeling of static tire enveloping characteristics   总被引:1,自引:0,他引:1  
To investigate static tire enveloping characteristics, a three dimensional (3-D) finite element model is proposed. The vertical stiffness of the tire is studied on a flat surface with and without cleat. Tire rubber materials and cord layers are represented independently using “rebar” elements available in MSC Marc Mentat. Comparisons of numerical and experimental results are given to show the validity of the proposed model. It is shown that after a certain displacement, the results of the proposed model agree well with experimental results. In addition, the model results show that regardless of the type of the cleat placed under the rim center (hub center), all vertical force curves intersect after a certain displacement, which indicates typical static enveloping characteristics. Moreover, another typical characteristic of the radial tires that is unlike those of bias-ply constructions confirms that the contact patch does not expand laterally after a level vertical load is applied to the tire, which is directly related to fuel consumption and tire tread life.  相似文献   
132.
The hot stamping process has been used in the automotive industry to reduce the weight of the body-in-white and to increase passenger safety via improved crashworthiness. However, defects such as fracture and wrinkle occur when hot stamping is performed using a conventional drawing or forming method. In this study, a channel-type indirect blank holder (CIBH) is proposed to develop a high-strength center pillar in form-type hot stamping, so that the aforementioned drawbacks are overcome. This type of blank holder plays an important role in reducing severe wrinkling at the flange; such wrinkling leads to folding after the completion of form-type hot-stamping. First, we investigated the effect of the channel shape on the indirect blank holding force by using a simplified two-dimensional plane-strain stamping process. Second, we selected the slope angle and corner radius of the channel as the main shape parameters by finite element analysis and artificial neural network (ANN). It is known that fracture at the hot formed wall and wrinkle at the flange are significantly affected by the slope angle of the channel, and the appropriate value for eliminating fracture and wrinkle is determined to be 99°. By performing hot stamping using a form die with the selected channel, we can manufacture a high-strength center pillar without wrinkle and fracture.  相似文献   
133.
The method of numerical multi-body simulation is an often used and well-understood development tool in the automotive industry. In order to reproduce the ride comfort or handling behaviour of vehicles, mathematical models have to be built up. To achieve accurate simulation results, highly detailed component models are required. However, the formulation of appropriate physically-based model equations of complex automotive components (e.g. air springs, shock absorbers, rubber bearings, tyres, etc.) can be very difficult. To handle this, empirical modelling methods have been developed. Simple algebraic equations are used to describe complex system behaviour. This simplification is very effective, although it largely ignores the natural laws of mechanics and thermodynamics but is still capable to predict the component response. This article illustrates how to take advantage of this approach in numerical simulations. We describe the development of a hybrid automotive shock absorber model based on both spline and neural network (NN) approaches. By combining these different approaches, an accurate model is achieved without loss of variability. Non-isothermal laboratory force-displacement measurements of an automotive shock absorber are being used to estimate the parameters of the NN. As shown, the model replicates the measured data with sufficient accuracy, especially the hysteresis. Finally, we present a set of quarter-car simulations with a built-in hybrid NN shock absorber.  相似文献   
134.
This paper suggests a fatigue life calculation method (A fatigue life calculation method is suggested) for rubber components based on the dynamic crack growth considering shear effect. Dynamic tearing tests were carried out, and the crack length was measured using an optical microscope to calculate the dynamic crack growth rate which characterizes and determines the fatigue life. The algorithm was numerically implemented in finite element code, ABAQUS standard, by using the user subroutine and applied to several rubber components. In the finite element analysis, deformation mode of an element was classified into tension and shear, and a weighting factor was multiplied to a strain energy density according to the degree of shear strain. Tension and compression of an elliptic dumbbell specimen was simulated in order to verify the material parameters of the suggested fatigue life prediction equation and to enhance the reliability of the algorithm. Finally, the fatigue life of a vehicle suspension bushing was calculated and compared with test. There were good agreements in the failure location and the magnitude of the fatigue life.  相似文献   
135.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   
136.
Engineering bus design requires testing of bus structures prototypes in order to guarantee a certain level of strength and an appropriate static and dynamic behavior of the bus superstructure when exposed to road loads. However, experimental testing of real bus structures is very expensive as it requires expensive resources and space. If testing is done on a scale bus model the previous required expenses are considerably reduced. Therefore, a novel methodology based on dimensional analysis applied to bus structure prediction to evaluate the bus structure static and dynamic performance is proposed. The static performance is evaluated attending to torsion stiffness and the dynamic in terms of the natural vibration frequencies and rollover threshold. A scale bus has been manufactured and dimensionless parameters have been defined in order to project the results obtained in the scale bus model to a larger model. Validation of the proposed methodology has been carried out under experimental and finite element analysis.  相似文献   
137.
In this study, a vehicle velocity estimation algorithm for an in-wheel electric vehicle is proposed. This algorithm estimates the vehicle velocity using the concept of effective inertia, which is based on the motor torque, the angular velocity of each wheel and vehicle acceleration. Effective inertia is a virtual mass that changes according to the state of a vehicle, such as acceleration, deceleration, turning or driving on a low friction road. The performance of the proposed vehicle velocity estimation algorithm was verified in various conditions that included straight driving, circle driving and low friction road driving using the in-wheel electric vehicle that was equipped with an in-wheel system in each of its rear wheels.  相似文献   
138.
In the year 2011, the Particle Measurement Program (PMP) in Europe started the regulation of the diesel vehicle’s nano-sized particle number density (PN) due to its high degree of harm to the human body. Concretely, the standard level of PN emission was introduced in the Euro 5+ and 6 emissions regulation with a limit (<6.0 × 1011#/km) for diesel light-duty vehicle. Therefore, the determination of suitable and sophisticated instruments for reliable particle sampling and analysis was essential in taking exact experimental data. Now, among the PN emission measuring devices suggested by the PMP, condensation particle counter (CPC) is a key equipment for measuring the particle number density in real time and it has been used extensively. However, CPC can cause different results depending on operating conditions of the saturator and condensation that induce different rates of particle growth. This study was conducted to analyze the effect of CPC calibrated by a two-particle generator with spray and soot type methods applied on the nano-sized particle distribution’s parameters such as number concentration and linearity. Also, in order to ensure the reliability for particle sensor system named as PPS, which had emerged as a useful diagnostic to making spatially and temporally resolved quantitative measurements of diesel PN concentration, it was compared with calibrated CPC system. As a result, nano-sized particle measuring system with CPC calibrated by spray type particle generator had a much higher counting efficiency, indicating a larger nano size available than soot type particle generator. And, comparative experimental results on the correlation between the particle number of CPC to a reflectance PPS system showed that above 5,000 #/cm 3 in number concentrations measured by CPC as well as PPS were found to be similar with good linear relationship.  相似文献   
139.
Engine mounts are used for engine vibration isolation. The dynamic performance of the mount depends on the orientation. Measurements of the dynamic properties of engine mounts are usually performed in the axial direction because of the problem related to actuator loading direction and set up costs. Impact technique is developed here to measure the dynamic driving point stiffness and driving point shear stiffness of engine mount in a single setup. The compressive and shear frequency-dependent stiffnesses are obtained in the vertical orientation. A transformation matrix is used to calculate the frequency-dependent stiffnesses and loss factors in other orientations. Three different designs of engine mounts are used to verify the accuracy of the transformation model. The correlation coefficient between calculation and measurement results show R2≥ 0.995 along the X- and Y-axes. For the Z-axis, mounts B and C showed R2≥ 0.95 and mount A 0.687 ≤ R2≤ 0.791.  相似文献   
140.
Numerical simulations of IC engines are of high interest for automotive engineers worldwide. The simulation models should be as fast as possible, low-computational effort and predictive tool. The correct prediction of turbulence level inside the combustion chamber of spark ignition engines is the most important factor influencing to the engine working cycle. This paper presents a development of the k-ε turbulence model applied to the commercial cycle-simulation software with the high emphasis on the intake part. The validation was performed on two engine geometries with the variation of engine speed and load comparing the cycle-simulation results of the turbulent kinetic energy and in-cylinder temperature with 3-D CFD results. In order to apply the cycle-simulation turbulence model for the simulation of entire engine map, the parameterization model of turbulence constants was proposed. The parameterized turbulence model was optimized using NLPQL optimization algorithm where the single set of turbulence model parameters for each engine was found. A good agreement of the turbulent kinetic energy during the expansion was achieved when the turbulence affects the flame front propagation and combustion rate as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号