全文获取类型
收费全文 | 447篇 |
免费 | 0篇 |
专业分类
公路运输 | 287篇 |
综合类 | 6篇 |
水路运输 | 90篇 |
铁路运输 | 3篇 |
综合运输 | 61篇 |
出版年
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 7篇 |
2019年 | 1篇 |
2018年 | 37篇 |
2017年 | 25篇 |
2016年 | 32篇 |
2015年 | 10篇 |
2014年 | 32篇 |
2013年 | 48篇 |
2012年 | 38篇 |
2011年 | 47篇 |
2010年 | 39篇 |
2009年 | 43篇 |
2008年 | 40篇 |
2007年 | 7篇 |
2006年 | 6篇 |
2005年 | 4篇 |
2004年 | 2篇 |
2003年 | 6篇 |
2002年 | 3篇 |
2001年 | 1篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1987年 | 1篇 |
1983年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有447条查询结果,搜索用时 15 毫秒
11.
S. J. Kim C. Song K. -S. Kim Y. -S. Yoon 《International Journal of Automotive Technology》2014,15(1):125-134
Conventional geared transmissions use some kinds of clutches to control the power flow from an internal combustion engine to the driveline while shifting gears. However, the shifting performance is seriously affected by the clutch engagement and an unavoidable drop in the torque may occur when the clutch is disconnected. Moreover, wear of the clutch, the need for hydraulic equipment, and the load limit may together aggravate the limits of the clutch system. For this reason, as a novel transmission without a clutch, the clutchless geared smart transmission (henceforth CGST) is proposed by our research team. The CGST controls the power flow in a multiple-input gear-train by controlling the electric motor attached to the planetary gear system. However, no CGST has been realized in an actual vehicle thus far, and the performance has been predicted only theoretically. In this research, we analyzed the achievable performance based on a developed CGST dynamic model with a typical CGST structure. In addition, a CGST gear-shifting algorithm is proposed for use with the dynamic model. From the simulation results, the CGST does not show an abrupt drop in its torque or oscillation while shifting gears due to the absence of a discontinuous power flow. The developed dynamic model can serve as a performance reference for the CGST. Moreover, it can be used as a simulation tool for developing a gear-shifting control logic scheme. 相似文献
12.
H. J. Kim M. W. Song H. I. Moon H. Kim H. Y. Kim 《International Journal of Automotive Technology》2014,15(2):317-324
This paper suggests a fatigue life calculation method (A fatigue life calculation method is suggested) for rubber components based on the dynamic crack growth considering shear effect. Dynamic tearing tests were carried out, and the crack length was measured using an optical microscope to calculate the dynamic crack growth rate which characterizes and determines the fatigue life. The algorithm was numerically implemented in finite element code, ABAQUS standard, by using the user subroutine and applied to several rubber components. In the finite element analysis, deformation mode of an element was classified into tension and shear, and a weighting factor was multiplied to a strain energy density according to the degree of shear strain. Tension and compression of an elliptic dumbbell specimen was simulated in order to verify the material parameters of the suggested fatigue life prediction equation and to enhance the reliability of the algorithm. Finally, the fatigue life of a vehicle suspension bushing was calculated and compared with test. There were good agreements in the failure location and the magnitude of the fatigue life. 相似文献
13.
J. K. Park T. H. Nguyen C. N. Kim S. Y. Lee 《International Journal of Automotive Technology》2014,15(3):361-367
Metal fiber is introduced as a new filter media in wall-flow Diesel Particulate Filter (DPF) system. This technology has high temperature durability which is required for filter regeneration, and can maintain the mechanical strength even in the extreme exhaust-related vibrations of vehicles. However, the regeneration near the wall (outer layer) is more difficult because of the heat loss and reduced gas flow near the wall. In this study, a flow is simulated to determine the flow control method for the more uniform flow in all filter layer. By using Star CCM+ commercial software, we obtain local velocity, streamline, and pressure distributions in the filter, which are typically difficult to obtain from measurements. The major control factors are the filter porosity, size and location of the distribution plate, and the number of blades of the swirler. By placing the distribution plate in front of the filter, the flow velocity near the wall was increased. The optimum location and size of the flat plate were chosen. By attaching the blade on the plate the flow velocity near the wall was increased more. Therefore, the regeneration efficiency is increased by using the swirler-type metal fiber DPF system. 相似文献
14.
C. W. Park H. C. Oh S. D. Kim H. S. Kim S. Y. Lee C. S. Bae 《International Journal of Automotive Technology》2014,15(4):525-533
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations. 相似文献
15.
Road boundaries can give useful information for evaluating safe vehicle paths in intelligent vehicles. Much previous research has studied road boundary detection, using different types of sensors such as vision, radar, and lidar. Lidar sensors, in particular, show advantages for road boundary extraction including high resolution and wide field of view. However, none of the previous studies examined the problem of detecting road boundaries when roads could be either structured or unstructured. In this study, we developed a road boundary detection and tracking algorithm using lidar sensing for both structured and unstructured roads. The algorithm extracts road features as line segments in polar coordinates relative to the lidar sensor. The extracted road features are then tracked with respect to a vehicle’s local coordinates using a nearest neighbor filter. The proposed algorithm accurately detected the road boundaries regardless of the road type. 相似文献
16.
S. Y. Ko J. W. Ko S. M. Lee J. S. Cheon H. S. Kim 《International Journal of Automotive Technology》2014,15(5):815-821
In this study, a vehicle velocity estimation algorithm for an in-wheel electric vehicle is proposed. This algorithm estimates the vehicle velocity using the concept of effective inertia, which is based on the motor torque, the angular velocity of each wheel and vehicle acceleration. Effective inertia is a virtual mass that changes according to the state of a vehicle, such as acceleration, deceleration, turning or driving on a low friction road. The performance of the proposed vehicle velocity estimation algorithm was verified in various conditions that included straight driving, circle driving and low friction road driving using the in-wheel electric vehicle that was equipped with an in-wheel system in each of its rear wheels. 相似文献
17.
M. C. Chung M. S. Kim G. S. Sung S. M. Kim J. W. Lee 《International Journal of Automotive Technology》2014,15(6):877-884
In the year 2011, the Particle Measurement Program (PMP) in Europe started the regulation of the diesel vehicle’s nano-sized particle number density (PN) due to its high degree of harm to the human body. Concretely, the standard level of PN emission was introduced in the Euro 5+ and 6 emissions regulation with a limit (<6.0 × 1011#/km) for diesel light-duty vehicle. Therefore, the determination of suitable and sophisticated instruments for reliable particle sampling and analysis was essential in taking exact experimental data. Now, among the PN emission measuring devices suggested by the PMP, condensation particle counter (CPC) is a key equipment for measuring the particle number density in real time and it has been used extensively. However, CPC can cause different results depending on operating conditions of the saturator and condensation that induce different rates of particle growth. This study was conducted to analyze the effect of CPC calibrated by a two-particle generator with spray and soot type methods applied on the nano-sized particle distribution’s parameters such as number concentration and linearity. Also, in order to ensure the reliability for particle sensor system named as PPS, which had emerged as a useful diagnostic to making spatially and temporally resolved quantitative measurements of diesel PN concentration, it was compared with calibrated CPC system. As a result, nano-sized particle measuring system with CPC calibrated by spray type particle generator had a much higher counting efficiency, indicating a larger nano size available than soot type particle generator. And, comparative experimental results on the correlation between the particle number of CPC to a reflectance PPS system showed that above 5,000 #/cm 3 in number concentrations measured by CPC as well as PPS were found to be similar with good linear relationship. 相似文献
18.
Node-based scheduling method for easy migration from CAN to FlexRay in in-vehicle networking systems
As vehicles become more intelligent, in-vehicle networking (IVN) systems such as controller area network (CAN) are essential for the convenience and safety of drivers. To expand the applicability of IVN systems, attention is currently being focused on chassis networking systems that require increased network capacity and real-time capabilities. FlexRay was developed to replace CAN protocol in chassis networking systems, to remedy the shortage of transmission capacity and unsatisfactory real-time transmission delay of conventional CAN. However, FlexRay network systems require a complex scheduling method, which is a barrier to their implementation as chassis networking systems. In particular, if we want to migrate from a CAN network to a FlexRay network using the well-defined CAN message database, which has been specifically constructed for chassis networking systems by automotive vendors, a new type of scheduling method is necessary to reduce scheduling efforts during the software development process. This paper presents a node-based scheduling method for easy migration from a CAN network to a FlexRay network system. To demonstrate the feasibility of the technique, its performance is evaluated in terms of various software complexity indices. 相似文献
19.
Seoungbum Kim 《智能交通系统杂志
》2017,21(3):179-189
》2017,21(3):179-189
Traffic speed is a crucial input for real-time traffic management applications. Operating agencies typically deploy their own sensors to collect the measurements, e.g., loop detectors. Recently, SpeedInfo emerged with a different paradigm for traffic speed collection: instead of selling hardware to operating agencies, at each link the company deploys its own Doppler radar in a self-contained wireless unit to measure traffic speeds and then sells the speed data. This study uses well-tuned loop detector-based speed measurements to evaluate 15 of the Doppler radar sensors over several months while the two traffic data collection systems were operating concurrently. The extended study period includes potentially challenging and transient conditions for the radar sensors: both recurrent (rush hour congestion and late night low flow) and nonrecurrent (incidents and precipitation). The analysis took a broad overview, comparing speed measurements from the radar sensors against the concurrent loop detector data and then explicitly looked for any anomalous pattern in the radar data such as latency and system outages. The work found the radar measurements are generally good, but also identified several points that should be considered before deployment, including latency, different biases in free flow and congestion, vulnerability to precipitation, and sensitivity to mounting angle. 相似文献
20.
This paper describes the development of an optimal design process for a steering column system and supporting system. A design
guide is proposed at the initial concept stage of the development process to obtain sufficient stiffness of the steering system
while reducing the idle vibration sensitivity of the system. Case studies on resonance isolation are summarized, where vibration
modes among the systems are separated by applying a vibration mode map at the initial stage of the design process. This study
also provides design guidelines for an optimal dynamic damper system using a CAE (computer aided engineering) analysis. The
damper FE (finite element) model is added to the vehicle model to analyze the relation between the frequency and the sensitivity
of the steering column system. This analysis methodology makes it possible to achieve target performance in the early design
stage and reduction of damper tuning activity after the proto car test stage. Through the proposed steering column system
development process, a lightweight vehicle with high stiffness is possible prior to the proto build stage. Furthermore, the
improved process is expected to contribute to reducing the overall development period and the number of proto car tests necessary
to achieve the desired steering system performance. 相似文献