首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   5篇
公路运输   287篇
综合类   6篇
水路运输   90篇
铁路运输   3篇
综合运输   61篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   1篇
  2018年   37篇
  2017年   25篇
  2016年   32篇
  2015年   10篇
  2014年   32篇
  2013年   48篇
  2012年   38篇
  2011年   47篇
  2010年   39篇
  2009年   43篇
  2008年   40篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有447条查询结果,搜索用时 62 毫秒
181.
Kim  Moon-Koo  Park  Jong-Hyun  Kim  Kyungsoo  Park  Byoungkyu 《Transportation》2020,47(2):663-688
Transportation - Electric vehicles (EVs) are considered as a driving force behind the automotive industry’s transformation based on eco-friendliness and high energy efficiency. Unlike...  相似文献   
182.
In this research, the effects of three operating parameters (Diesel injection timing, propane ratio, and exhaust gas recirculation (EGR) rates) in a diesel-propane dual fuel combustion were investigated. The characteristics of dual-fuel combustion were analyzed by engine parameters, such as emission levels (Nitrogen oxides (NOx) and particulate matter (PM)), gross indicated thermal efficiency (GIE) and gross IMEP Coefficient of Variance (CoV). Based on the results, improving operating strategies of the four main operating points were conducted for dual-fuel PCCI combustion with restrictions on the emissions and the maximum pressure rise rate. The NOx emission was restricted to below 0.21 g/kWh in terms of the indicated specific NOx (ISNOx), PM was restricted to under 0.2 FSN, and the maximum pressure rise rate (MPRR) was restricted to 10 bar/deg. Dual-fuel PCI combustion can be available with low NOx, PM emission and the maximum pressure rise rate in relatively low load condition. However, exceeding of PM and MPRR regulation was occurred in high load condition, therefore, design of optimal piston shape for early diesel injection and modification of hardware optimizing for dual-fuel combustion should be taken into consideration.  相似文献   
183.
Stereoscopic particle image velocimetry measurements were made in a wind tunnel using a prototype waterjet model. The main wind tunnel provided the vehicle velocity and a secondary wind tunnel was set up as the waterjet propulsion model. Pressure distributions along the ramp and lip sides inside the duct were measured for three jet velocity to vehicle velocity ratios. Three-dimensional velocity fields were obtained at the intake entrance and the nozzle exit of the waterjet system. The flow into the duct was faster in the lip region than on the ramp side. Because of the variation in intake geometry from a rectangular to a circular section and because of the sudden curvature change on the lip side, a pair of counter-rotating vortices was observed in the mean velocity field at the nozzle exit. In addition, the turbulent kinetic energy correlated with the vortex pair was stronger on the lip side than in other areas. Dominant large-scale structures were extracted by using a snapshot proper orthogonal decomposition analysis. It was found that most of the turbulent kinetic energy was attributed to at least three vortices near the nozzle exit. This detailed three-dimensional velocity field will be useful for the verification of CFD simulations applied to the waterjet system.  相似文献   
184.
In a shipyard, line heating and triangle heating are two major processes carried out by skilled workers to form curved plates in various shapes under various heating conditions. There have been many studies on line heating, but triangle heating has rarely been studied owing to its complicated heating process with irregular multiheating paths and highly concentrated heat input. Triangle heating is the most labor-intensive job. Hence, it is essential for most shipyards to study the automation, as well as the improvement, of the triangle heating process in order to increase hull-forming productivity. In this study, a pioneering attempt to simulate triangle heating was made. A circular disk-spring model is proposed as an analysis model for the elastoplastic procedure of triangle heating, and the inherent strain method is also used to analyze the deformation of plates. The results of the simulation were compared with those of experiments and showed good agreement. It is shown that the present approach and the model used in this study are effective and efficient for simulating triangle heating for the steel plate forming process in shipbuilding.  相似文献   
185.
In this paper, we investigated the effect of sloshing on the sway motions of two-dimensional rectangular cylinders in regular waves, bearing in mind possible applications for LNG-FPSO and LNG-FSRU. First, we carried out experiments for two models with different drafts, or the same draft but different filling ratios, in which the models were firmly connected to each other. The sway motion was measured with a noncontact video camera. This is an extension of Rognebakke and Faltinsen’s work for a single model (J Ship Res 47(3):208–221, 2003). It was found that the sway motion became small when the incident wave frequency was close to the lowest natural frequency of each model. The sway motion greatly increased when the wave frequency was higher than this frequency. The measured data were compared with numerical results obtained by a single-dominant multi-modal method; relatively good agreement was noted. However, the numerical results deviated from the experimental results near the lowest natural frequency of the smaller model, which was believed to be due to overturning waves, as observed during the experiment. Since this is out of the valid range for the single-dominant multi-modal method, other, more appropriate, methods such as the multi-dominant modal method must be applied instead.  相似文献   
186.
Ships are complex engineering structures that are designed and built on the basis of technical experience. A shipowner will often be required to estimate the price of a new ship on the basis of the value of comparable ships identified in trade journals. Similarly, shipbuilders are often interested in estimating approximate costs during the tendering phase in order to determine whether a ship is likely to be competitive for a particular order. Thus, when designing a ship prior to having obtained a contract, one of the most important processes is the estimation of approximate costs, including materials, associated labor, and overhead. During this preliminary design phase, the design is temporary and subject to change based on variations in the shipowner’s requirements. Hence, quick and flexible responses are key during this period and an integral aspect of the competitive powers of the shipbuilder. Given this environment, we propose a “configuration estimation method.” Our method is based on the configuration design method that is widely used in three-dimensional (3D) computer aided design (CAD) systems. We assume that a product lifecycle management system is furnished and that the cost is then estimated via the configuration of the ship, using an engineering bill of materials (E-BOM). In referring to the E-BOM, we utilize technical parametric costs derived from similar ships built previously. Using the proposed method, it is possible to obtain an accurate list of materials from the quotation, as well as a detailed work assessment for labor costs and overhead rates, so that reliable cost estimates can be generated quickly and flexibly. To demonstrate the practical applicability and effectiveness of the proposed method, we implement the prototype of a shipbuilding configuration estimation system by using a Microsoft Structured Query Language database and an E-BOM from AVEVA Marine version 12.01, which is a representative CAD system for shipbuilding.  相似文献   
187.
In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs,which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio(SDR) versus virtual anchor length(LA) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline,offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.  相似文献   
188.
189.
In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the seakeeping analyses using three different methods based on a 3D Rankine panel method, including 1) a rigid-body solver, 2) a flexible-body solver using a beam model, and 3) a flexible-body solver using the eigenvectors of a 3D Finite Element Model(FEM). The flexible-body solvers adopt a fully coupled approach between the fluid and structure. We consider the nonlinear Froude–Krylov and restoring forces using a weakly nonlinear approach. In addition, we calculate the slamming loads on the bow flare and stern using a 2D generalized Wagner model. We compare the numerical and experimental results in terms of the linear response, the time series of the nonlinear response, and the longitudinal distribution of the sagging and hogging moments. The flexible-body solvers show good agreement with the experimental model with respect to both the linear and nonlinear results, including the high-frequency oscillations due to springing and whipping vibrations. The rigid-body solver gives similar results except for the springing and whipping.  相似文献   
190.
In 1994, Townend proposed a method to calculate the relative changes in various wave characteristics and structure-related parameters due to sea level rise for regular waves. The method was extended to irregular waves by Cheon and Suh in 2016. In this study, this method is further extended to include the effect of future change in offshore wave height and the sea level rise. The relative changes in wavelength, refraction coefficient, shoaling coefficient, and wave height in nearshore area are presented as functions of the relative changes in water depth and offshore wave height. The calculated relative changes in wave characteristics are then used to estimate the effect of sea level rise and offshore wave height change on coastal structures by calculating the relative changes in wave run-up height, overtopping discharge, crest freeboard, and armor weight of the structures. The relative changes in wave characteristics and structure-related parameters are all expressed as a function of the relative water depth for various combinations of the relative changes in water depth and offshore wave height.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号